Project	IEEE 802.16 Broadband Wireless Acces	s Working Group http://ieee802.org/16									
Title	Extension of OFDMA Physical layer mode to support 256 & 1024 point QAM constellations for high capacity back-haul applications										
Date Submitted	2013-03-07										
Source(s)	David Castelow, Andrew Logothetis and Marlon Persaud Airspan Communications Ltd Capital Point, 33 Bath Road Slough, SL1 3UF, UK	Voice: +44 1895 467281 E-mail: dcastelow at airspan.com * <http: affiliationfaq.html="" faqs="" standards.ieee.org=""></http:>									
Re:	IEEE 802.16-13-0032-01-Gdoc										
Abstract	• •	A physical layer in order to support 256-QAM and ssary extensions to the block sizes and control codes.									
Purpose	For acceptance as part of the 802.16r amen	dment.									
Notice	represents only the views of the participants listed i	of the IEEE 802.16 Working Group or any of its subgroups. It n the "Source(s)" field above. It is offered as a basis for ho reserve(s) the right to add, amend or withdraw material									
Copyright Policy	The contributor is familiar with the IEEE-SA Copy http://standards.ieee.org/IPR/copyrightpolicy.html										
Patent Policy	The contributor is familiar with the IEEE-SA Paten http://standards.ieee.org/guides/opman/se Further information is located at http://standards.iee http://standards.iee	ect6-7.html#6> and ect6.html#6.3>.									

Extension of OFDMA Physical layer mode to support 256 & 1024 point QAM constellations for high capacity back-haul applications

David Castelow, Andrew Logothetis and Marlon Persaud Airspan Communications Ltd 13/03/2013

Scope

This document is in response to the call for contributions to the 802.16r PAR. It specifies changes required to the "IEEE Std 802.16-2012" [1] standard to implement the 256- and 1024-QAM modulation using Convolutional Turbo Codes (CTCs), together with the introduction of a new block size to allow efficient use of the increased spectral efficiency.

References

[1] 802.16-2012, IEEE Standard for Air Interface for Broadband Wireless Access Systems, May 2012.
[2] 802.16.1-2012, IEEE Standard for WirelessMAN-Advanced Air Interface for Broadband Wireless Access Systems, September 2012.

Background

The 802.16r PAR calls for contributions to support high-order modulations, and specifically mentions 256, 512 and 1024 point QAM. The increase in spectral efficiency is required to support applications such as small cell backhaul.

It should be noted that the 256 and 1024 point QAM are conventional "square" constellations that result from being of the form $2^{(2n)}$, that is not the case for 512-point QAM. It is the opinion of the authors of this contribution that system gains associated with the non-square 512-point QAM constellation are questionable and do not justify the increased complexity. Equivalent gains can be obtained using the 1024-point constellation along with stronger forward error correction. As a result this contribution does not consider 512-point QAM any further.

This contribution addresses changes in the OFMDA physical layer mode only.

In addition to PHY changes, we introduce a new MAC message to support signaling of both CQI and HARQ ACK/NACK from MS, as an alternative to using HARQ ACK/NACK signaling regions. Although similar to the HARQ messages used for Relay, there is no single message that allows an MS to report both CQI and HARQ ACK/NACK.

Requirements

Mac Message

We propose to enhance the capacity of the system by eliminating the need to allocate a fixed region for CQI and HARQ ACK/NACK signals. This is appropriate for systems with very few MS and when the operating SNR for all links is high, as is envisaged for the use of the standard in Small Cell Backhaul (SCB) applications. To allow signaling of the same information, we introduce a Channel state information message (SCB_CHN_INFO).

Replace the following line from Table 6-51:

Туре	Message Name	Message Description	Connection
110–255		Reserved	
With			
Туре	Message Name	Message Description	Connection
110	SCB_CHN_INFO	CQI and HARQ ACK/NACK of	of
		received message	
111-255		Reserved	

After section 6.3.2.3.98 introduce the following text:

6.3.2.3.99 SCB_CHN_INFO

If the BS does not schedule a PUSC region in a frame and therefore not include a HARQ ACK/NACK or CQI feedback channel and makes an allocation for the MS, then an MS supporting SCB shall transmit an SCB CHN INFO management message in the first allocated slot. Each MS may be required to supply at most 2 CQI reports. It is the BS responsibility to schedule appropriate slots and modulation/coding to allow the MS to transmit this information.

Table 6-227A – SCB_CHN_INFO											
Syntax	Size (bit)	Notes									
<pre>SCB_CHN_INFO_Message_format() {</pre>											
Management Message Type = 111	8										
Number of CQI Reports (-1)	1	0: 1 report, 1: 2 reports									
Frame Number	3	Least significant 3 bits of frame									
		number that this message refers to.									
CQI Report 1	6	CQI feedback, see section 8.4.11.6									
		and table 8-336									
CQI Report 2	6	CQI feedback, see section 8.4.11.6									
		and table 8-336									
HARQ ACK bitmap	16	DL HARQ limited to 16 per MS.									

Channel Coding

Channel coding procedures include randomization (see 8.4.9.1 of [1]), FEC encoding (see 8.4.9.2 of [1]), bit interleaving (see 8.4.9.3 of [1]), repetition (see 8.4.9.5 of [1]), and modulation (see 8.4.9.4 of [1]). Repetition is only applied to QPSK modulation.

Based on Table 8-317 of [1], the valid FEC block sizes N_{EP} (measured in bits prior to encoding) are: 48, 72, 96, 144, 192, 216, 240, 288, 360, 384, 432, and 480. The N_{EP} have been chosen in such a way that for any of the predefined modulation and coding scheme, a slot's worth of data is mapped to one of the FEC blocks. Here, a new FEC block size of 320 bits is introduce for the two highest modulations. This is done to support the 5/6 rate for 256-QAM and 2/3 rate for 1024-QAM. We also introduce three new rates: 5/8 for 256-QAM, and 3/5 and 4/5 for 1024-QAM. This was done in order to support the pre-existing FEC block sizes.

For CTC, the valid coding rates for 256-QAM are:

- $1/2 = 0.500, (N_{EP} = 192)$ ٠
- $5/8 = 0.625, (N_{EP} = 240)$

- 3/4 = 0.755, (N_{EP} = 288)
- 5/6 = 0.833, (N_{EP} = 320)

For CTC, the valid coding rates for 1024-QAM are:

- 3/5 = 0.600, (N_{EP} = 288)
- 2/3 = 0.667, (N_{EP} = 320)
- 3/4 = 0.750, (N_{EP} = 360)
- 4/5 = 0.800, (N_{EP} = 384)

Interleaving: To support higher performance in systems where we expect large packets to be encoded, we propose increasing the number of different CTC interleaver options. These are included in the changes to the tables below. The interleaver parameters have been chosen to be, as far as possible, compatible with those described in IEEE 802.16-2012 [1], either Table 8-304 or 8-305, or using values already accepted for IEEE 802.16.1-2012, table 6-309 [2].

UCD management message encoding

The FEC code type and modulation type field of the UCD burst profile encodings, of Tables 11-18 of the standard [1], shall be augmented with new values:

Editorial Instruction:

In Table 11-18, replace

	luce			
	FEC Code type and modulation type	150	1	53255=Reserved
With the following	<u> </u>			·1
	FEC Code type	150	1	53 = 256-QAM (CTC) 1/2
	and modulation			54 = 256-QAM (CTC) 5/8
	type			55 = 256-QAM (CTC) 3/4
				56 = 256-QAM (CTC) 5/6
				57 = 1024-QAM (CTC) 3/5
				58 = 1024-QAM (CTC) 2/3
				59 = 1024-QAM (CTC) 3/4
				60 = 1024-QAM (CTC) 4/5
				61255=Reserved

DCD management message encoding

The FEC code type and modulation type field of the DCD burst profile encodings, of Tables 11-25 of the standard [1], shall be augmented with new values:

Editorial Instructio In Table 11-25, rep				
	FEC Code type and modulation	150	1	53255=Reserved
	type			
With the following				
	FEC Code type	150	1	53 = 256-QAM (CTC) 1/2
	and modulation			54 = 256-QAM (CTC) 5/8
	type			55 = 256-QAM (CTC) 3/4
				56 = 256-QAM (CTC) 5/6
				57 = 1024-QAM (CTC) 3/5
				58 = 1024-QAM (CTC) 2/3
				59 = 1024-QAM (CTC) 3/4
				60 = 1024-QAM (CTC) 4/5
				61255=Reserved

CTC encoder

The "Encoding slot concatenation for different rates in CTC" Table 8-313, Sec. 8.4.9.2.3.1 of [1], shall be augmented with the 256- and 1024-QAM coding rate parameter j as shown in Table 1 below:

Modulation and rate	j
256-QAM-1/2	2
256-QAM-5/8	2
256-QAM-3/4	1
256-QAM-5/6	1
1024-QAM-3/5	1
1024-QAM-2/3	1
1024-QAM-3/4	1
1024-QAM-4/5	1

Table 1. Encoding slot concatenation for 1024-QAM and various rates in CTC.

The "Parameters for the subblock interleavers" Table 8-317, Sec. 8.4.9.2.3.4.2 of [1], shall be augmented with the new block size as shown in Table 2 below:

Block size	N	Subblock interleaver parameters							
(bits) N _{EP}	IN	т	J						
320	110	6	3						

Table 2. Parameters for the subblock interleavers

Augment Table 8-314 "CTC channel coding per modulation", Sec. 8.4.9.2.3.1 of [1], with the contents of Table 3 below:

Modulation	Data block size (bytes)	Encoding data block size (bytes)	Code rate	N	P0	P1	P2	Р3	
<u>256-QAM</u>	<u>24</u>	<u>48</u>	<u>1/2</u>	<u>96</u>	<u>7</u>	<u>48</u>	<u>24</u>	<u>72</u>	
<u>256-QAM</u>	<u>48</u>	<u>96</u>	<u>1/2</u>	<u>192</u>	<u>11</u>	<u>96</u>	<u>48</u>	<u>144</u>	
<u>256-QAM</u>	<u>120</u>	<u>240</u>	<u>1/2</u>	<u>480</u>	<u>53</u>	<u>62</u>	<u>12</u>	<u>2</u>	
<u>256-QAM</u>	<u>240</u>	<u>480</u>	<u>1/2</u>	<u>960</u>	<u>43</u>	<u>64</u>	<u>300</u>	<u>824</u>	
<u>256-QAM</u>	<u>360</u>	<u>720</u>	<u>1/2</u>	<u>1440</u>	<u>43</u>	<u>720</u>	<u>360</u>	<u>540</u>	
<u>256-QAM</u>	<u>480</u>	<u>960</u>	<u>1/2</u>	<u>1920</u>	<u>31</u>	<u>8</u>	<u>24</u>	<u>16</u>	
<u>256-QAM</u>	<u>600</u>	<u>1200</u>	<u>1/2</u>	<u>2400</u>	<u>53</u>	<u>66</u>	<u>24</u>	<u>2</u>	
<u>256-QAM</u>	<u>30</u>	<u>48</u>	<u>5/8</u>	<u>120</u>	<u>13</u>	<u>60</u>	<u>0</u>	<u>60</u>	
<u>256-QAM</u>	<u>60</u>	<u>96</u>	<u>5/8</u>	<u>240</u>	<u>13</u>	<u>120</u>	<u>60</u>	<u>180</u>	
<u>256-QAM</u>	<u>120</u>	<u>192</u>	<u>5/8</u>	<u>480</u>	<u>53</u>	<u>62</u>	<u>12</u>	<u>2</u>	
<u>256-QAM</u>	<u>240</u>	<u>384</u>	<u>5/8</u>	<u>960</u>	<u>43</u>	<u>64</u>	<u>300</u>	<u>824</u>	
<u>256-QAM</u>	<u>360</u>	<u>576</u>	<u>5/8</u>	<u>1440</u>	<u>43</u>	<u>720</u>	<u>360</u>	<u>540</u>	
<u>256-QAM</u>	<u>480</u>	<u>768</u>	<u>5/8</u>	<u>1920</u>	<u>31</u>	<u>8</u>	<u>24</u>	<u>16</u>	
<u>256-QAM</u>	<u>600</u>	<u>960</u>	<u>5/8</u>	<u>2400</u>	<u>2400</u> <u>53</u>		<u>24</u>	<u>2</u>	
<u>256-QAM</u>	<u>36</u>	<u>48</u>	<u>3/4</u>	<u>144</u>	<u>17</u>	<u>74</u>	<u>72</u>	<u>2</u>	
<u>256-QAM</u>	<u>360</u>	<u>480</u>	<u>3/4</u>	<u>1440</u>	<u>43</u>	<u>720</u>	<u>360</u>	<u>540</u>	
<u>256-QAM</u>	<u>40</u>	<u>48</u>	<u>5/6</u>	<u>160</u>	<u>17</u>	<u>84</u>	<u>108</u>	<u>132</u>	
<u>256-QAM</u>	<u>120</u>	<u>144</u>	<u>5/6</u>	<u>480</u>	<u>53</u>	<u>62</u>	<u>12</u>	<u>2</u>	
<u>256-QAM</u>	<u>240</u>	<u>288</u>	<u>5/6</u>	<u>960</u>	<u>43</u>	<u>64</u>	<u>300</u>	<u>824</u>	
<u>256-QAM</u>	<u>360</u>	<u>432</u>	<u>5/6</u>	<u>1440</u>	<u>43</u>	<u>720</u>	<u>360</u>	<u>540</u>	
<u>256-QAM</u>	<u>480</u>	<u>576</u>	<u>5/6</u>	<u>1920</u>	<u>31</u>	<u>8</u>	<u>24</u>	<u>16</u>	
<u>256-QAM</u>	<u>600</u>	<u>720</u>	<u>5/6</u>	<u>2400</u>	<u>53</u>	<u>66</u>	<u>24</u>	<u>2</u>	
<u>1024-QAM</u>	<u>36</u>	<u>60</u>	<u>3/5</u>	<u>144</u>	<u>17</u>	<u>74</u>	<u>72</u>	<u>2</u>	
<u>1024-QAM</u>	<u>360</u>	<u>600</u>	<u>3/5</u>	<u>1440</u>	<u>43</u>	<u>720</u>	<u>360</u>	<u>540</u>	
<u>1024-QAM</u>	<u>40</u>	<u>60</u>	<u>2/3</u>	<u>160</u>	<u>17</u>	<u>84</u>	<u>108</u>	<u>132</u>	
<u>1024-QAM</u>	<u>120</u>	<u>180</u>	<u>2/3</u>	<u>480</u>	<u>53</u>	<u>62</u>	<u>12</u>	<u>2</u>	
<u>1024-QAM</u>	<u>240</u>	<u>360</u>	<u>2/3</u>	<u>960</u>	<u>43</u>	<u>64</u>	<u>300</u>	<u>824</u>	
<u>1024-QAM</u>	<u>360</u>	<u>540</u>	<u>2/3</u>	<u>1440</u>	<u>43</u>	<u>720</u>	<u>360</u>	<u>540</u>	

Modulation	Data block size (bytes)	Encoding data block size (bytes)	Code rate	N	P0	P1	P2	Р3
<u>1024-QAM</u>	<u>480</u>	<u>720</u>	<u>2/3</u>	<u>1920</u>	<u>31</u>	<u>8</u>	<u>24</u>	<u>16</u>
<u>1024-QAM</u>	<u>600</u>	<u>900</u>	<u>2/3</u>	<u>2400</u>	<u>53</u>	<u>66</u>	<u>24</u>	<u>2</u>
<u>1024-QAM</u>	<u>45</u>	<u>60</u>	<u>3/4</u>	<u>180</u>	<u>11</u>	<u>90</u>	<u>0</u>	<u>90</u>
<u>1024-QAM</u>	<u>360</u>	<u>480</u>	<u>3/4</u>	<u>1440</u>	<u>43</u>	<u>720</u>	<u>360</u>	<u>540</u>
<u>1024-QAM</u>	<u>48</u>	<u>60</u>	<u>4/5</u>	<u>192</u>	<u>11</u>	<u>96</u>	<u>48</u>	<u>144</u>
<u>1024-QAM</u>	<u>240</u>	<u>300</u>	<u>4/5</u>	<u>960</u>	<u>43</u>	<u>64</u>	<u>300</u>	<u>824</u>
<u>1024-QAM</u>	<u>480</u>	<u>600</u>	<u>4/5</u>	<u>1920</u>	<u>31</u>	<u>8</u>	<u>24</u>	<u>16</u>

Table 3. CTC channel coding for increased block sizes and for 256- and 1024-QAM

Data Modulation

Modify the following text from section

8.4.9.4.2 Data modulation:

After the repetition block, the data bits are entered serially to the constellation mapper. Gray-mapped QPSK and 16-QAM (as shown in Figure 8-128) shall be supported, whereas the support of 64-QAM, <u>256-QAM and</u> <u>1024-QAM</u> is optional.

The constellations (as shown in Figure 8-128 and Figures 8-128A and 8-128B) shall be normalized by multiplying the constellation point with the indicated factor c to achieve equal average power.

And add the following text and figures:

The Gray-mapped 256-QAM is shown in FigureFigure 8-128A The constellation shall be normalised by multiplying the constellation point by the factor $c = 1/\sqrt{170}$ to achieve equal average power.

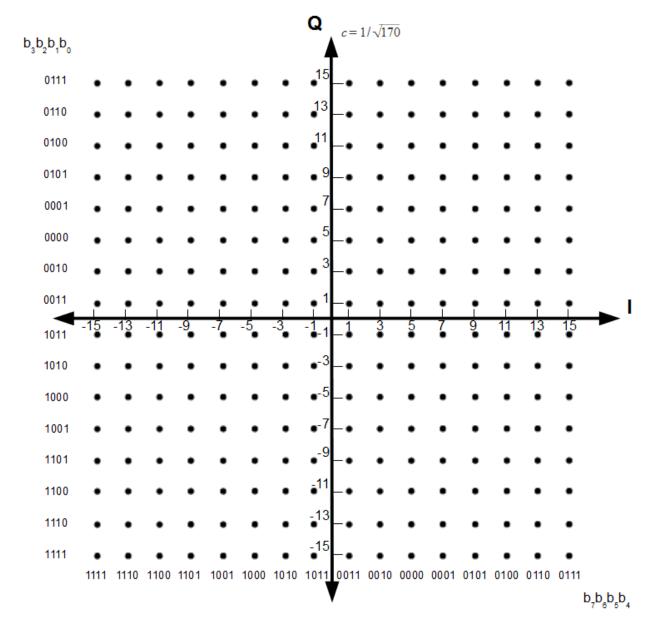
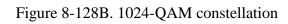



Figure 8-128A. 256-QAM constellation

The Gray-mapped 1024-QAM is shown in Figure 8-128B. The constellation shall be normalised by multiplying the constellation point by the factor $c = 1/\sqrt{682}$ to achieve equal average power.

																(ב	=1/	682															
b ₄ b ₃ b ₂ b ₁ b ₀																4																		
01111	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3 1	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
01110	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2 9	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
01100	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
01101	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	25	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
01001	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
01000	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	21	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
01010	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1 9	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
01011	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	17 •	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
00011	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• ¹⁵	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
00010	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1 3	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
00000	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•11	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
00001	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 9	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
00101	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• ′	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
00100	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 0	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
00110	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 3	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
00111	-31	-29	-27	-25	-23	-21	-19	-17	-15	-13	-11	-9	-7	-5	-3	• 1 -1 •-1	_• _1	3	5	-	9	11	13	15	17	19	• 1	23	25	27	29	31		I.
10111	•	20	-27	20	20	-	Ĭ	•	•	•	•	ĕ	•	•	•	~	-•	ĕ	ě	٠	ĕ	٠	ě	•	•	•	21	23	25	27	•	•		
10110	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•-3 5	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
10100	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•-5 -7	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
10101	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•-7 •-9	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
10001	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •11	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
10000	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-13	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
10010	•	•	•	•	•	•	•	•	•	•	•		•	•	•	-15	•	•	•	•	•		•		•	•	•	•	•	•	•	:		
10011 11011																-17																		
11010											•					-19																		
11000	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-21		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
11001	•	•	•	•	•	•	•	•	•	•	•	•	•		•	-23	-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
11101	•		•	•		•	•	•				•	•	•	•	-25	-•	•	•	•		•	•	•		•	•	•		•	•	•		
11100	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-27		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
11110	•		•	•	•	•		•	•	•	•	•		•	•	-29	-•	•	•		•		•	•		•	•	•		•	•	•		
11111	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-31	-•	•	•	•	•	•	•	•		•	•	•		•	•	•		
	1111	11110	11100	11101	11001	11000	11010	11011	10011	10010	10000	10001	10101	10100	10110	10111	0111	00110	00100	00101	00001	00000	00010	00011	01011	01010	01000	01001	01101	01100	01110	01111	, p p	
		-	÷	~	-	-	-	·-	-	-	,-		0	0	0	U	0	U	0	0	U	0	0	0	J	0	J	bೄbೄb ₇ bೄb ₅	

