DeepBeam: Deep Waveform Learning for Coordination-Free Beam Management in mmWave Networks

Date: 2021-05-10

Authors:

Name	Affiliations	Address	Phone	email
Francesco Restuccia	Northeastern	360 Huntington Ave, Boston, MA	617-373-3655	frestuc@northeastern.edu
Michele Polese	University,			m.polese@northeastern.edu
Tommaso Melodia	WIOT Institute			melodia@northeastern.edu
	*			

Outline

Motivation Contributions DeepBeam framework DeepBeam use cases Experimental evaluation Conclusions

mmWaves in mobile networks

IEEE 802.11ad supports **frequencies up to 70.2 GHz with 2.16GHz channels**

Problem: Beam management in mmWave networks

TX and RX focus their energy in narrow beams

• They need to point the beams toward each other

 Otherwise, the gain introduced by using beamforming could disappear

Directionality Challenges

need beamforming gain even during the cell search of initial access

Directionality Challenges Need for tracking

need to track beams (and, in case, update access point/BS) as the user moves

Traditional beam management

• Need for exhaustive scan

In IEEE 802.11ad, beams are distributed in 128 sphere sectors, with beam widths as small as 3 degrees (Nitsche et al, Steering With Eyes Closed: Mm-wave Beam Steering Without In-band Measurement, INFOCOM 2015).

A beam sweep is performed by the TXer plus intra-sector fine-tuning is used to refine the selection (Nitsche et al., IEEE 802.11 ad: Directional 60 GHz Communication for Multi-Gigabit-per-second Wi-Fi, IEEE Comm. Mag, 2014.)

Typical 3GPP NR configuration can take up to **164 ms** for 24-beam codebooks at TX and RX

Deep Learning for mmWaves

- Complex control procedures (e.g., beam management)
- Need for coordination among network nodes
- Need for quick reactions

AI can play a crucial role to optimize mmWave operations, with predictive and/or autonomous control policies

AI-enabled Beam Management

Deep-learning-enabled operations:

- Exploit ongoing data transmissions (no pilots)
- No need for exhaustive scan at RX

Reduce latency and overhead

Contributions

1. First waveform-learning framework for mmWaves

Speed up initial access and tracking No need for pilots

2. Experimental validation

Dataset with 4TB of raw waveform, to be released Multiple radios (NI/SiBeam and Pi-Radio) Multiple TX/RX combinations and spatial configurations

M. Polese, F. Restuccia and T. Melodia, "DeepBeam: Deep Waveform Learning for Coordination-Free Beam Management in mmWave Networks," Proc. of ACM MobiHoc 2021. Preprint available at <u>https://arxiv.org/abs/2012.14350</u>.

Contributions

Our approach achieves accuracy of up to 96%, 84% and 77% with a 5-beam, 12-beam and 24-beam codebook

Our approach reduces latency by up to 7x with respect to the 5G NR initial beam sweep

DeepBeam in a nutshell

What does DeepBeam learn?

DeepBeam framework

doc.: DCN 11-21-0776-00-0wng

DeepBeam Inference Engine

Submission: DCN 11-21-0776-00-0wng

Francesco Restuccia, Northeastern University

Initial Access Latency for DeepBeam

Initial Access Latency for DeepBeam

We also model the latency for the classification in the CNN

Exploit pipelining

$$T_{\text{DB,C,e2e}} + (N_{tX} - 1)T_{\text{DB,C,max}}$$

End-to-end CNN latency Latency of the slowest layer

DeepBeam - Experimental results Multi-radio data collection at 60 GHz

SiBeam/NI with analog phased arrays

Pi-radio SDR with digital beamforming

DeepBeam – Dataset

Classification target	TX Codebook	Testbed	Configuration	(TX, RX) antenna combinations			
TXB	24-beams codebook	Single-RF-chain	Basic, with obstacle, diagonal	SiBeam (0, 1), (1, 0), (2, 1), (3, 1)			
TXB	12-beams codebook	Single-RF-chain	Basic, with obstacle, diagonal	SiBeam (0, 1), (1, 0), (2, 1), (3, 1)			
AoA	24-beams codebook	Single-RF-chain	Basic, with obstacle, diagonal	SiBeam (0, 1), (1, 0), (0, 2), (0, 3)			
TXB	5-beams codebook	Multi-RF-chain	Multi-RF-chain basic	Node A, Node B			

 Table 1: Setups for the I/Q data collection.

4 TB of raw I/Q samples

Different TX codebooks, antenna frontends, spatial configurations CNN trained with Adam optimizer, 60% training 40% testing

Actual beam 50 Sector Actual beam 50 Sector

(b) 12-beam, L = 5, Accuracy: 84.02%

(a) 12-beam, L = 1, Accuracy: 81.02%

(c) 24-beam, L = 1, Accuracy 68.77% (d) 24-beam, L = 5, Accuracy: 77.46%

NI/SiBeam radios, basic configuration, mixed SNR

1.4 m

Basic configuration

1.2 m

12 beam – 80% accuracy

doc.: DCN

Impact of input size

(a) Accuracy vs input size K.

(b) Accuracy: 91.56%

Pi-Radios, basic configuration, mixed SNR

Impact of SNR

(a) Low SNR. Accuracy 43.47%

(b) High SNR. Accuracy: 86.36%

NI/SiBeam radios, basic configuration

Impact of location

Submission: DCN 11-21-0776-00-0wng

Francesco Restuccia, Northeastern University

Training and testing on different devices

- Train on one device, test on another
- Features learned by the CNN are a mixture of antenna-based and antennaindependent
 - Accuracy decreases with mixed testing and training
 - Accuracy does not drop to random classification
 - More than 3x better than random

Training and testing with mixed dataset

Mixed dataset with I/Qs from all 4 NI/SiBeam antennas

Increase accuracy of 124% (24-beam), 191% (12-beam), and 44% (AoA) with respect to TOTA

Conclusions and main takeaways

Deep waveform learning is effective at mmWaves

Enables pilot-less approaches that can improve overall performance

Future work

Develop **fine tuning** solutions to improve **generalization** capabilities

Test different **scenarios** and more **AoA** values

Dataset to be released soon, stay tuned!

Submission: DCN 11-21-0776-00-0wng

Francesco Restuccia Institute for the Wireless Internet of Things Northeastern University

frestuc@northeastern.edu

https://restuccialab.org

https://northeastern.edu/wiot

Thanks! Questions?

DeepBeam – 3GPP NR use case

Initial Access Latency for 3GPP NR

Defined as *latency to perform a full IA/cell search scan*

Initial Access Latency Results

FPGA implementation of CNN (0.492 ms for e2e delay, 0.34 ms for slowest layer)

Comparison with 12 beams at TX and RX, 3300 subcarriers (400 MHz bandwidth), 3GPP numerology 3, J is the number of symbols allocated to each user. 802.11ad is 0.2554

doc.: DCN 11-21-0776-00-0wng

May 2021

Initial Access Latency for 3GPP NR

$$T_{\rm EBS} = T_{\rm SS} \left(\left\lceil \frac{N_{tx} M_{rx}}{N_{\rm SS}} \right\rceil - 1 \right) + \hat{T}_{\rm EBS} \right)^{-1}$$

Time to scan the remaining SS blocks in the last SS burst

$$\hat{N}_{SS} = N_{tx}M_{rx} - (\lceil N_{tx}M_{rx}/N_{SS}\rceil - 1)N_{SS}$$

SS burst in a 3GPP NR slot

