#### [Propagation measurements and considerations for TGad channel modeling in conference room, living room and cubicle environments]

#### Date: 2009-07-15

#### Authors:

| Name            | Affiliations               | Address                                                    | Phone           | email                      |
|-----------------|----------------------------|------------------------------------------------------------|-----------------|----------------------------|
| Hirokazu Sawada | Tohoku University          | 2-1-1 Katahira, Aoba-ku,<br>Sendai 980-8577, JAPAN         | +81-22-217-6112 | sawahiro@riec.tohoku.ac.jp |
| Shuzo Kato      | NICT/ Tohoku<br>University | 3-4, Hikarino-Oka,<br>Yokosuka, Kanagawa<br>239-0847 Japan |                 | shu.kato@nict.go.jp        |
| Katsuyoshi Sato | NICT                       | 3-4, Hikarino-Oka,<br>Yokosuka, Kanagawa<br>239-0847 Japan |                 | satox@nict.go.jp           |

#### Abstract

[This document describes propagation measurement results and considerations for TGad channel modeling in conference room, living room and cubicle environments.]

**1. Intra cluster propagation parameters by measurement for 3 environments** 

2. Dual polarization feasibility tested for 3 environments – confirmed feasibility of dual-polarized system in some case

# Current status of channel models and this contribution

| Environments |               | Inter cluster<br>by simulation | Intra cluster<br>by measurement    | Dual polarization feasibility                                                        |
|--------------|---------------|--------------------------------|------------------------------------|--------------------------------------------------------------------------------------|
| Conference   | Previous work | Done                           | Done                               | Done<br>Conclusion?                                                                  |
|              | This work     |                                | Done<br>Modeling:<br>Further study | Done<br>Linier pol. STA-STA OK<br>AP-STA ?<br>Circular pol.: STA-STA OK<br>AP-STA OK |
| Living       | Previous work | Not yet                        | Not yet                            | Not yet                                                                              |
|              | This work     |                                | Done<br>Modeling:<br>Further study | Done<br>Linier pol. OK<br>Circular pol. OK                                           |
| Cubicle      | Previous work | Not yet                        | Not yet                            | Not yet                                                                              |
|              | This work     |                                | Done<br>Modeling:<br>Further study | Done<br>Linier pol. STA-STA OK<br>AP-STA ?<br>Circular pol.: STA-STA OK<br>AP-STA OK |

## **Problems in the current channel models (1)**

- Polarization concept was shown in Doc.09/431 and 09/552, however, it is not integrated in the current TGad channel model.
- We propose a channel model including S<sub>VV</sub>, S<sub>HH</sub>, S<sub>VH</sub>, S<sub>HV</sub> matrices by real measurement results.



### **Problems in the current channel models (2)**

 NLOS scenario is not clearly defined. We propose to define NLOS scenario as shadowing due to PC in conference room and human body in living room.





Direct path from Tx

NLOS scenario in conference room NLOS scenario using human phantom in living room



# Instrument: Vector network analyzerAntenna: Conical horn antenna

#### Measurement set up

| Parameter                  | Value                                                                                            |  |
|----------------------------|--------------------------------------------------------------------------------------------------|--|
| Center frequency           | 62.5 GHz                                                                                         |  |
| Band width                 | 3 GHz                                                                                            |  |
| Number of frequency points | 801 / 1601                                                                                       |  |
| Frequency step             | 3.75 MHz / 1.875 MHz                                                                             |  |
| HPBW of antenna (Gain)     | 60 degree (10dBi)<br>30 degree (16dBi)                                                           |  |
| Polarization               | Co-polarized signal:<br>Vertical / Horizontal / Circular<br>Cross-polarized signals:<br>V→H, H→V |  |
| Calibration                | Direct port connection without antennas                                                          |  |

# Transmission characteristics of polarized signal waves

$$S_{ij} = S_{VV}, S_{HV}, S_{VH}, S_{HH}, S_{CC}$$

- *i* : Polarization of receiving signal *j* : Polarization of transmitting signal
- Polarization V: Vertical H: Horizontal C: Circular

•Measurements were carried using polarized signal waves to investigate the feasibility of dual polarized signal transmission and polarization diversity systems

#### **Measurement in conference room**

#### Floor plan of conference room defined by TGad



Submission

# **AP-STA communication link**



Tx is fixed



#### AP-STA link

#### Measurement configuration

HPBW of Tx antenna(AP) is 60 degrees, it covers all desktop area.
Single directional propagation channels in which Tx antenna was fixed were measured for all AP-STA communications.

**Example of impulse responses of link 5 (AP-STA4)** 



Cross polarization discrimination was 21dB at the direct path, and 13 dB at 20 degree Rx offset angle from the direct path.
Antenna alignment by beam-forming is important to avoid interference of cross-polarized signal.

<u>July</u>, 2009

#### **Received power and delay spread of the link5**





(a)Co-polarized signal waves
(b)Cross-polarized signal waves
\*All relative power were normalized by the maximum power level of V-V. Threshold level for delay spread calculation is less than 30dB from the peak power.

The AWGN channel model is acceptable for the evaluation, since AP-STA link can keep LOS situation basically.

•XPD is the minimum when Tx and Rx antennas are aligned.

About dual signal transmission feasibility is describes in cubicle environment.

# **STA-STA communication link**





#### STA-STA link

#### Measurement configuration

Double directional propagation channel was measured for all STA-STA communications.

Submission

## Impulse response example of link7 (V-V) in conference environment



# **Relative received power of the link7 LoS scenario for cross-polarized signal waves**



Cross-polarized components were not observed on STA-STA link in conference environment.

Dual polarized signal transmission is feasible.

#### LOS/NLOS scenario for STA5->STA3 link





#### LOS scenario

#### NLOS scenario

# •NLOS scenario was also measured as the direct path component was blocked by notebook PC.

July, 2009

doc.: IEEE 802.11-09/0874r1



- NLoS pathloss is larger than LoS pathloss in direct-path by +14.5dB in vertical, +15.5dB in horizontal, +23.5dB in circular
  H pol. reflection path loss :+2.6dB larger than vertical
- •V pol.: better for single polarized signal transmission

#### **Measurement in living room**



#### **Communication link**



# Impulse response example of LOS scenario



# **Relative received power in LoS scenario for cross-polarized signal waves**



# Received power of Cross-polarized signal waves is very small.Dual polarized signal transmission is feasible.

#### **Human phantom for NLoS Scenario**







(b) Back side.

To measure the NLOS scenario, a human phantom was made by electromagnetic absorber. Antenna height is changed to 1m.

**July, 2009** 



#### **Received power in LOS/NLoS scenario for co-pol. signal waves**

NLOS scenario: Attenuated LOS component by human absorber •NLoS path loss is larger than LoS path loss in direct-path by +26dB in vertical, +23dB in horizontal, +26dB in circular

Loss measurement of actual human body with mobility is future work

#### **Measurement in cubicle office**



#### **AP-STA link**





#### AP-STA Link

Inside of a cubicle

#### This is a vertical transmission link scenario.

# Example of impulse responses for co-and cross-polarized signal waves



In this vertical link between AP to STA need attention for polarization mismatch.

#### **Polarization mismatch in vertical link**



# **STA-STA link**



Measurement set up



Manually rotation (30deg step)

#### This is a very short transmission scenario.



Direct wave is dominant, significant reflection wave was not observed.Channel characteristics is almost AWGN.



- The double directional propagation characteristics for all three environments were measured.
- Defined NLOS (by TGad) environments have been evaluated "NLOS path loss addition" varies from 14+ to 25+ dB (depending on obstacles and polarizations): "+10dB for link budget" (in Doc.09/296) may need to be re-evaluated.
- Dual polarized signal waves communications has some feasibility for a fixed wireless link, however, the interference level  $(S_{VH}, S_{HV})$ depends on the antenna's XPD characteristics and Tx/Rx antenna positioning a lot.  $\rightarrow$  Antenna models with polarization will be required, if we consider such a system for our functional requirement.
- The path-loss and impulse response models including co- and crosspolarization characteristics will be available pretty soon.
- Some channel models can be approximated by AWGN channels if beam-forming technology is properly employed.