May 2009

doc.: IEEE 802.11-09/0624r1

IEEE P802.11
Wireless LANs

	Yet Another Key Derivation Function

	Date: 2009-05-13

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Dan Harkins
	Aruba Networks
	1322 Crossman ave, Sunnyvale, CA
	+1 408 227 4500
	dharkins at arubanetworks dot com

	
	
	
	
	

Modify section 8.8 as shown:

Section 8.8 Key Derivation Function
The key derivation function for use in a mesh network, KDF, is defined as follows:
Output = KDF-Length(KEY, X1, X2, … Xn) (KEY, Label, Context) where

Input:
KEY, a variable length key derivation key of at least 128 bits

X1, X2, … Xn a variable number of variable-length strings

 Label, a string that identifies the purpose of the derived keying material

 Context, a binary string containing information related to the derived keying material

Output: a Length-bit derived key

K (L(KEY, 0, 128)

result (“”

iterations ((Length + 127)/128

do i = 1 to iterations

result  result || vPRF(K, Length, i, X1, X2, … Xn)

result (result || AES-128-CMAC(K, I || Label || 0x00 || Context || Length)

od

return first Length bits of result, L(result, 0, Length) and securely delete all unused bits.
where vPRF(K, P1, P2, … Pm) is defined as

if m = 0 then return AES-128-CMAC(K, 0x01)

S  AES-128-CMAC(K, 0x00)

do j = 1 to m – 1

S  Double(S)  AES-128-CMAC(K, Pj)

od

if |Pm|  128 then T  S -end Pm else T  Double(S)  Pm10*

return AES-128-CMAC(K, T)

and the name derivation function for use in a mesh network, NDF, is described as follows:

N = NDF(S)

Where Input: S, a single string of variable length (usually the derived key context).
Output: N = {0, 1}128, a key name, each possible name in the name space having an equal probability of being output. It uses internal three variables all 16 octets in length: result, iterations, and n. It uses an internal string variable that is either four (4) or eight (8) octets in length greater than the input string.

 result (0x67 0x45 0x23 0x01 || 0xEF 0xCD 0xAB 0x89 || 0x98 0xBA 0xDC 0xFE ||

0x10 0x32 0x54 0x76

n (|S|

S’ (pad(S) || n

iterations (|S’|/128

do i = 1 to iterations

result = AES-ECB-encrypt(L(S’, 128*(i–1), 128), result)  result

od

return result

where:

· L(-) is defined in 8.5.1.

· Double(S) means a multiplication of 2 and S modulo the irreducible polynomial x128 + x7 + x2 + x + 1. This can be easily implemented as a left shift and if the bit being shifted off is 1 then exclusive-ring the result with the string 012010000111.

·  is the exclusive-or operation

· N -end X is an exclusive-or operation of the n-bit string N onto the end of string X that has at least n bits.

· X10* signifies padding of string X with a 1 and as many 0s as necessary to bring the length of the padded string to 128 bits

· pad(X).signifies padding zero or more bits of value 0 onto a string such that the length in bits of the padded string is a multiple of 128.

· 0x00 is defined as a single octet of value zero.
· i and Length are encoded as 16 bit unsigned integers, represented using the bit ordering conventions of 7.1.1.

AES-ECB-encrypt is defined in NIST SP 800-38a. and AES-128-CMAC is defined in NIST SP 800-38b.
NOTE—The vPRF construct allows for various implementation optimizations. For example, if P1, P2, and P3 are passed to a vPRF with the same key and P1 and P2 are constants it is possible to calculate an S value after running the vPRF algorithm through P1 and P2 and stopping before the final calculation of T. This value can be cached and for subsequent calls to vPRF the final T value can be calculated from the cached S and P3. If Pj is a constant over several invocations of the vPRF with the same key it is also possible to calculate the intermediate value AES-128-CMAC(K, Pj) to avoid duplicate work.

Modify section 8.9.1 as shown:

8.9.1 Keys and Key Derivation Algorithm

The AKEK and AKCK shall be derived from the PMK by

AKCK || AKEK KDF-384(PMK, “AKCK AKEK Derivation”, Selected AKM Suite, min(localMAC, peerMAC), max(localMAC, peerMAC))

AKCK || AKEK KDF-384(PMK, “AKCK AKEK Derivation”, Selected AKM Suite || min(localMAC, peerMAC) || max(localMAC, peerMAC))

The temporal key (MTK) shall be derived from the PMK by

MTK  KDF-X(PMK, “Temporal Key Derivation”, min(localNonce, peerNonce), max(localNonce, peerNonce), min(localLinkID, peerLinkID), max(localLinkID, peerLinkID), Selected AKM Suite, min(localMAC, peerMAC), max(localMAC, peerMAC))

MTK  KDF-X(PMK, “Temporal Key Derivation”, min(localNonce, peerNonce) || max(localNonce, peerNonce) || min(localLinkID, peerLinkID) || max(localLinkID, peerLinkID) || Selected AKM Suite || min(localMAC, peerMAC) || max(localMAC, peerMAC))

Modify section 11B.2.3.1.1 as shown (note that resolution of 224 is shown)
11B.2.3.1.1 Generation of the Password Element

The Password Element of an elliptic curve group is called PWE and is generated in a random hunt-and-peck fashion. A counter is used with the password to generate a seed value. This counter, represented as a single octet, is initially set to one (1). Then the password seed is stretched using the KDF function from section 8.8.3 to the length of the prime number from the group definition with the string Label of “SAE Hunting and Pecking”and the Content being the prime. The resulting password value is then reduced modulo the prime. The reduced password value is then used as the x-coordinate of a curve and the equation for the curve is checked to see if a solution for y exists. If no solution exists, the counter is incremented, a new password-seed is derived and the hunting-and-pecking continues. If a solution exists, there will be two possible values for y. The password seed is used to determine which one to use. If the LSB of the password seed is equal to the LSB of y returned as the solution to the quadratic equation then the candidate PWE is (x, y) otherwise the candidate PWE is (x, p-y). The candidate PWE is then multiplied by the co-factor of the curve to produce a test point. If the test point is “the point-at-infinity” the counter is incremented, a new password seed is derived and the hunting-and-pecking process continues. If it does not equal the “point-at-infinity” the candidate PWE shall become the PWE.

Note: the test point - the co-factor of the curve multiplied by the candidate PWE - does not become the PWE.

Algorithmically this process can be described as follows:

found = 0;

counter = 1

z = len(prime)

do {

 pwd-seed = H(password || counter)

 pwd-value = KDF-z(pwd-seed, “SAE Hunting and Pecking”, prime) modulo prime

x = pwd-value modulo p

if an equation exists for y from x and the equation for the curve: y2 = x3 + ax + b

then

if LSB of pwe-seed equals LSB of y

then

PWE = (x,y)

else

PWE = (x, p-y)

fi

T = h * PWE

if T does not equal the “point-at-infnity”

then

found = 1

fi

fi

counter = counter + 1

} while (found=0)

Modify section 11B.2.3.2.1 as shown (note that resolution to 742 is shown):

11B.2.3.2.1 Generation of the Password Element

The password element in a prime modulus group is called pwe and is generated directly (i.e. without hunting-and-pecking) by generating a password seed. The password seed is then stretched to the length of the prime using the KDF function from section 8.8 to the length of the prime number from the group with the Label of “SAE Fixing the Password Element” and the Content being the prime ot produce a password value which is then. and exponentiating it exponentiated to a number based on the prime, p, and the order of the group.

z = len(prime)

pwd-seed = H(password)

pwd-value = KDF-z(pwd-seed, “SAE Fixing the Password Element”, prime) modulo p

pwd pwe = pwd-value(p-1)/r modulo p
Remove section H.10, make H.11 become H.10

References:

NIST SP 800-38b

NIST SP 800-108

Abstract

This submission resolves comments 122, 527, 1193 and 1194.

Note to editor: comments 224 and 742 were resolved in an omnibus resolution and this document includes fixes for them to prevent confusion about whether the old text is being reintroduced.

Submission
page 6
Dan Harkins, Aruba Networks

