November 2008

doc.: IEEE 802.11-08/1409r0

IEEE P802.11
Wireless LANs

	Proposed Resolutions for Comment Group #7

	Date: 2008-10-29

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Jesse Walker
	Intel Corporation
	2111 NE 25th Ave JF3-206, Hillsboro OR 97006
	+1 503 712 1849
	jesse.walker@intel.com

Comment Group #7
Proposed Resolution to CID 109 as “Accept”, “See CID 157”

Proposed Resolution to CID 153 as “Accept”, “See CID 157”
Proposed Resolution to CID 155 as “Counter”, “See CID 157”

Proposed Resolution to CID 156 as “Accept”, “See CID 157”

Proposed Resolution to CID 157 as “Accept”, “Resolutions as in doc 11-08/1409
Proposed Resolution to CID 223 as “Counter”, Updated from “See CID 270…” to “See CID 157…”

Proposed Resolution to CID 268 as “Counter”, “See CID 157”

Proposed Resolution to CID 270 as “Counter”, “See CID 157”
In Section 3 add

xxx. Robust Action frame: an Action frame which is not a Public Action frame.
In Section 5.4.3.8, replace “Action” with “Robust Action”

p. 24, line 1, replace “Robust Action frame” with “Robust Management frame”

p. 31, lines 1-2: change the text as follows: shall discard unprotected unicast Robust Action frames received from any STA that advertised MFPC=1, and it shall discard received unprotected unicast Disassociation and Deauthentication frames from a STA that advertised MFPC=1 after the PTK and IGTK have been installed. The receiver shall process unprotected unicast Disassociation and Deauthentication frames before the PTK and IGTK are installed.
p. 31, lines 8-9: change the text as follows: protected unicast Robust Action frames to and from any STA, shall not transmit unprotected unicast Robust Action frames to any STA, and shall discard unprotected unicast Robust Action frames received from any STA, and it shall discard received unprotected unicast Disassociation and Deauthentication frames from a STA after the PTK and IGTK have been installed. The receiver shall process unprotected unicast Disassociation and Deauthentication frames before the PTK and IGTK are installed.
P 31, line 33, replace “management Action frames” with “Robust Management frames”
Add the following as the last paragraph of 8.4.11 (page 31):

Note that Robust Management frame protection cannot be applied until the PTK and IGTK has been established with the STA. Hence, a STA shall not transmit Robust Action frames until it has installed the PTK for the peer STA, or, in the case of broadcast/multicast, has installed the IGTK, and shall also discard any Robust Action frames received before the PTK and IGTK are installed.
Replace the content of 8.4.12 (page 33) as follows:
A STA with dot11RSNAProtectedManagementFramesEnabled set to TRUE shall negotiate Robust Management frame protection with a STA that advertised MFPC=1.
Replace the contents of 8.7.2.1a with the following:
if ((dot11RSNAEnabled = TRUE) and (frame is a Robust Management frame)) then
if ((dot11RSNAProtectedManagementFramesEnabled = FALSE) then
Transmit the MMPDU without protection
else // dot11RSNAProtectedManagementFramesEnabled = TRUE

if (dot11RSNAUnprotectedManagementFramesAllowed = TRUE) then
if (MMPDU has an individual RA) then

if (peer STA advertised MFPC = 1) then
if (Pairwise key exists for the MMPDU's RA) then
// Note that it is assumed that no entry in the key

// mapping table will be of an unsupported cipher.

Transmit the MMPDU, to be protected after fragmentation

// see 8.7.2.2a

else if (Robust Action frame) then
// pairwise key was not found

Discard the MMPDU and generate an MLME.confirm primitive to notify the SME that the MMPDU was not delivered

else // Disassociation or Deauthentication
Transmit the MMPDU without protection
endif
else // (peer STA didn’t advertised MFPC = 1)

Transmit the MMPDU without protection

endif

else // MMPDU has a multicast/broadcast RA

if (IGTK exists) then
// if we find a suitable IGTK

Transmit the MMPDU with protection // See 8.7.2.2a
else
Discard the MMPDU and generate an MLME.confirm primitive to notify the SME that the MMPDU was undeliverable

endif
endif
else // dot11RSNAUnprotectedManagementFramesAllowed = FALSE

if (MMPDU has an individual RA) then

if (peer STA advertised MFPC = 1) then
if (Pairwise key exists for the MMPDU's RA) then
// Note that it is assumed that no entry in the key

// mapping table will be of an unsupported cipher.

Transmit the MMPDU, to be protected after fragmentation

// see 8.7.2.2a

else if (Robust Action frame) then
// pairwise key was not found

Discard the MMPDU and generate an MLME.confirm primitive to notify the SME that the MMPDU was not delivered

else // FrameControlSubType is Disassociation or Deauthentication
Transmit the MMPDU without protection
endif
else // peer STA didn’t advertise MFPC = 1

Discard the MMPDU and generate an MLME.confirm primitive to notify the SME that the MMPDU was not delivered

endif

else // MMPDU has a multicast/broadcast RA

if (IGTK exists) then
// if we find a suitable IGTK

Transmit the MMPDU with protection // See 8.7.2.2a
else
Discard the MMPDU and generate an MLME.confirm primitive to notify the SME that the MMPDU was undeliverable

endif
endif
endif

endif
else // (dot11RSNAEnabled = FALSE) or (not a Robust Management Frame)
Use 8.7.2.1 to transmit the frame
endif
Replace the contents of 8.7.2.3a with the following:
if ((dot11RSNAEnabled = TRUE) and (frame is a Robust Management frame)) then
if ((dot11RSNAProtectedManagementFramesEnabled = FALSE) then
if (Protected Frame subfield of the Frame Control field is set to 1) then
Discard the frame
else
Receive the MMPDU

endif
else // dot11RSNAProtectedManagementFramesEnabled = TRUE

if (dot11RSNAUnprotectedManagementFramesAllowed = TRUE) then
if (STA with frame TA advertised MFPC = 0) then
if (Protected Frame subfield of the Frame Control field is set to 1) then
Discard the frame
else
Make frame available for further processing
endif
else // STA with frame TA advertised MFPC = 1
if (MMPDU has an individual RA) then
if (Pairwise key does not exist) then

if (frame is a Disassociation or Deauthentication) then
if (Protected Frame subfield of the Frame Control field is set to 0) then
Make the MPDU available for futher processing
else // encrypted

Discard the frame
endif
else // frame is not a Disassociation or Deauthenticate

Discard the frame
endif
else if (security association has an AES-CCM key) then
if (Protected Frame subfield of the Frame Control field is set to 0) then
//unprotected frame
Discard the frame

else // frame is encrypted
if (PN is not sequential) then
Discard the MPDU as a replay

Increment dot11RSNAStatsCCMPReplays
else
Decrypt frame using AES-CCM key

if (the integrity check fails) then
Discard the frame

Increment dot11RSNAStatsCCMPDecryptErrors
else
Make the MPDU available for further processing

endif
endif
endif

else // key for some other cipher – for future expansion

endif
else // MMPDU has a multicast/broadcast RA

if (IGTK does not exist) then

if (Disassociation or Deauthentication) then

Make frame available for further processing

else

Discard the frame

endif

else // IGTK exists

if (MMIE is not present) then
Discard the frame

else // MMIE is present
if (AES-128-CMAC IGTK) then
if (PN is not valid) then
Discard the frame as a replay

Increment dot11RSNAStatsCMACReplay
else if (integrity check fails) then
Discard the frame

Increment dot11RSNAStatsCMACICVError
else

Make frame available for further processing
endif

else // some other kind of key – for the future

endif
endif
endif
endif
endif
else // dot11RSNAUnprotectedManagementFramesAllowed = FALSE

if (MMPDU has an individual RA) then

if (peer STA advertised MFPC = 1) then
if (Pairwise key exists for the MMPDU's RA) then
if (security association has an AES-CCM key) then
if (Protected Frame subfield of the Frame Control field is set to 0) then
if (frame is a Disassociation or Deauthentication) then
Make the MPDU available for futher processing
else // encrypted

Discard the frame
endif

else // frame is encrypted
if (PN is not sequential) then
Discard the MPDU as a replay

Increment dot11RSNAStatsCCMPReplays
else
Decrypt frame using AES-CCM key

if (the integrity check fails) then
Discard the frame

Increment dot11RSNAStatsCCMPDecryptErrors
else
Make the MPDU available for further processing

endif
endif
endif

else // key for some other cipher – for future expansion

endif
else if (Robust Action frame) then

Discard the frame
else // FrameControlSubType is Disassociation or Deauthentication

Make frame available for processing
endif
else // peer STA didn’t advertise MFPC = 1

Discard the frame

endif

else // MMPDU has a multicast/broadcast RA

if (IGTK exists) then
if (MMIE is not present) then
Discard the frame
else // MMIE is present
if (AES-1280CMAC IGTK) then
if (PN is not valid) then
Discard the frame as a replay

Increment dot11RSNAStatsCMACReplay
else if (security association has an AES-128-CMAC IGTK) then
Discard the frame

Increment dot11RSNAStatsCMACICVError
else

Make frame available for further processing
endif

else // some other kind of key – for the future

endif
endif
else // IGTK does not exist
if (Disassociation or Deauthentication) then

Make frame available for further processing
else

Discard the frame

endif

endif
endif
endif

endif
else // (dot11RSNAEnabled = FALSE) or (not a Robust Management Frame)
Use 8.7.2.3 to receive the frame

endif
p 49, line 36, replace “Ping request action management frame” with “SA Query Request frame”.

p. 50, lines 25 and 60, replace “Ping Response action management frame” with “SA Query Response frame”.
p. 52, line 4, replace “Ping Response action management frame” with “SA Query Response frame”.

Abstract

This document contains proposed resolutions to the following comments from SB on D6.0

Comment Group #7 (CID 109, 153, 155, 156, 157)

All changes apply to TGw draft D6.0, unless specified otherwise.

Submission
page 6
Jesse Walker (Intel Corporation)

