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1 Introduction
It is well known that the multiple input multiple output (MIMO) structure allows much more system capacity gain than the single input single output (SISO) system. And, two opportunities by the use of multiple input multiple output (MIMO) channels can be realized, that is, the spatial diversity and the spatial multiplexing.

Now, in the IEEE 802.11n Standard, the Space Time Block Coding is optional, which is used to enhance the link reliability by capturing spatial diversity. While the spatial multiplexing schemes like BLAST pump multiple information data into MIMO channels for increased throughput, which can be considered for the application in future wireless local area network (WLAN) to provide extraordinarily high bit rates.
In this proposal, we intend to present the signification for the application of spatial multiplexing techniques, especially the Bell Labs Layered Space-Time (BLAST) schemes with successive interference cancellation decoding algorithm. Since the interference from the previous vectors with minimum estimation mean square error (MSE) is cancelled and that from the later vectors is suppressed, the BLAST techniques can be realized with simple encoding structure and decoding algorithm with low computational complexity.
 2 Motivation
From the information-theoretic point of view, the ultimate limit of multiple-antenna systems has been explored.

If a multiple-antenna system has M transmit and N receive antennas and the narrowband slow fading channel can be modeled as an 
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 matrix with i.i.d. complex Gaussian random entries, the average channel capacity of such a system is approximately 
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 times higher than that of a single input single output system for the same overall transmitted power.
In the application of the multiple independent channels, high throughput is a main object. And, from the simple transmission structure to the simplification of the decoding, the BLAST scheme becomes more and more available for practice.

BLAST has the potential to increase the capacity of the wireless link by a factor of 
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 and is applicable for fixed wireless access (as in a wireless LAN).
As is known, a practical consideration for BLAST is the decoding complexity. And, the transmitter need employ a channel code to guarantee good performance with the majority of fading channel realizations since the transmitter can not have the instantaneous information about the fading channel. Since multi-antenna communication allows for information transmission at very high rates, a major issue of concern is to keep the computational complexity of the decoding algorithm within reasonable bounds.
Obviously, maximum likelihood decoding, for example, is clearly beyond question since it typically requires a search over the prohibitively large set of all possible transmitted signals. Fortunately, some efficient decoding algorithms for BLAST have been invented.
3 Main Features
There are three main features that are detailed as follows.

1. Simple encoding architecture. Compared to the spatial diversity techniques, the spatial multiplexing techniques, such as BLAST, have very simple encoding architecture.
2. Flexibility. The BLAST can use the existing system structure to transmit much more throughput than the single input single output system, which makes high throughput realized by the use of the existing system equipments.
3. High data rate. The multiplexing technique can provide much higher data rate than the diversity techniques. This technique has the potential to improve the throughput with increase of the minimum of the number of transmit and receive antennas. 
4 System Model
4.1 Antenna Structure
We refer to a multiple-antenna system in which the BS has M transmit antennas and the CPE has N receive antennas as an (M, N) system. The channels between the transmit antennas and receive antennas are independent and identical complex Gaussian distribution.
4.2 Encoding
The spatial multiplexing technique has very simple encoding structure, which allows for information transmission at very high rates. At the BS, the information data are divided into several streams and transmitted from multiple transmit antennas simultaneously.

The encoding process is described as follows. At first, the input information sequence is divided into N sub sequences, and each subsequence is subsequently encoded by a channel code encoder. The output of the coder is transmitted at the transmit antennas according to the models illustrated in Fig.1. In the figures, 
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Fig.1 Encoding process of BLAST

In Fig.1, (a) is the encoding process of the Horizontally layered space-time (HLST) structure and (b) is the encoding process of the Diagonally layered space-time (DLST) structure. 
It is obvious that the interference between the signals from the transmit antennas of DLST structure is less than that of HLST structure. And however, the data rate of HLST structure is higher than that of DLST structure.

4.3 Decoding
4.3.1 Basic Decoding Algorithm
One major issue of concern for BLAST is to keep the computational complexity of the decoding algorithm within reasonable bounds.

The maximum likelihood decoding is the algorithm used widely, but it is clearly beyond question for it typically requires a search over the prohibitively large set of all possible transmitted signals. Therefore, the efficient decoding algorithms with successive interference cancellation are invented.
The receive signals can be expressed by an 
[image: image9.wmf]1

´

N

 vector as

[image: image10.wmf]v

Hc

x

+

=

, 

where 
[image: image11.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

N

x

x

M

1

x

 is the received signal vector, and 
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 vector for the transmitted signals from M transmit antennas. The equation is fit for both HLST and DLST. The only difference is that there are some zero-positions in some transmitted signal vectors for DLST.
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 is the complex channel matrix with statistically independent entries, where 
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The linear minimum mean squared error (MMSE) detection of 
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where the MMSE filtering matrix 
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 zero vector, and superscripts “+” and “-1” for the pseudo-inverse and inverse operations respectively. It is easy to show that 
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is often referred to as the ith MMSE nulling vector.
The conventional V-BLAST detection detects M elements of 
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 iteratively with the optimal ordering. According to the MMSE detection of 
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 is the reduced signal vector. The solution is now given by
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and the corresponding error covariance is 
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. The detection will proceed until all elements are detected.
The basic decoding algorithm for BLAST can be summarized as the following:
1) Find 
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2) Find the smallest diagonal entry of 
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 and reorder the entries of 
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 so that the smallest diagonal entry is the last Mth one.
3) Form the least-mean-square estimate 
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4) Obtain 
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5) Cancel the effect of 
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6) Continue to find 
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4.3.2 Efficient Decoding Algorithm
In the basic decoding algorithm, the main problem is that the dominant portion, nearly 90%, of the computation complexity involves determining the nulling vectors and optimal ordering in the steps 1 and 6 in the algorithm. Motivated by this, an efficient square-root decoding algorithm is proposed to compute 
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) iteratively utilizing unitary transformations and avoiding time-consuming inversions. Since it is a unitary transformation based algorithm without any inversion or squaring operation, it is numerically stable and robust.
Consider the QR decomposition of the augmented channel matrix:
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This means the initial nulling vectors may be obtained via 
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This algorithm may be summarized as follows.
1) Compute square root of 
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and propagate the square-root algorithm N times:
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2) Find the minimum length row of 
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5) The nulling vector for the Mth signal is given by 
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6) Go back to Step 2, but now with 
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4.3.3 Improved Decoding Algorithm

The square-root decoding algorithm introduced in the last sub-section is efficient and numerically stable in the sense that it uses unitary transformations to avoid computing any inverse (or pseudo-inverse, QR decomposition) or squaring. However, it can be seen from the steps of the algorithm that there is still room to increase its efficiency. For example, the algorithm computes the whole nulling matrices 
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Noticing the transform 
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is incorporated, yields
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Therefore the optimal nulling vector for the Mth signal, which is the Mth row of 
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This implies that the optimal nulling vector may be obtained utilizing 
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The steps of this algorithm may be summarized as follows.

1) Compute 
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and propagate the following square-root algorithm
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2) Find the minimum length row of 
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3) Find a unitary transformation 
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4) The nulling vector for the Mth signal is given by 
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5) Go back to step 2, but now with 
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.
Compared to the traditional square-root algorithm, the computational efficiency of this algorithm is improved 36% in terms of the number of multiplications and additions required. At the same time, the advantages of the traditional square-root algorithm, such as robustness, hardware friendliness, and numerical stability have been maintained.
5 Conclusion
In this comment, we suggest to apply the spatial multiplexing technique in the multi-antenna systems.

Traditionally, the spatial diversity is used in most conditions. Considering the high processing ability of DSP, we comment to use the spatial multiplexing technique in the multi-antenna systems because the spatial multiplexing technique has the excellent characters of simple encoding and transmission structure and the the computation complexity of the decoding algorithm becomes acceptable now. 
In conclusion, the spatial multiplexing technique, like BLAST, is available for multi-antenna systems.
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