August 2004

doc.: IEEE 802.11-04/0952r1

IEEE P802.11
Wireless LANs

WWiSE Partial Proposal on Turbo Codes: Specification
Date:
August 13, 2004
Author:
Stephen P. Pope, et al.

Texas Instruments

141 Stony Circle, Ste. 130, Santa Rosa CA 95401 USA

Phone: +1 510 841 8315

Fax: +1 707 521 3066

e-Mail: spp@ti.com
Abstract

This document provides the proposed draft specification for the WWiSE group turbo code partial proposal.
1
Contributors
Sean Coffey, Texas Instruments
Dennis Connors, Texas Instruments
Gabriella Convertino, STMicroelectronics

Bruce Edwards, Broadcom

Matt Fischer, Broadcom

James Gardner, Airgo Networks
Srikanth Gummadi, Texas Instruments
Neil Hamady, Bermai

Chris Hansen, Broadcom
Dave Hedberg, Conexant
VK Jones, Airgo Networks
Young Kim, Bermai
Tushar Moorti, Broadcom
Mike Moreton, STMicroelectronics

Fabio Osnato, STMicroelectronics

Pratima Pai, STMicroelectronics

Steve Pope, Texas Instruments

Ali Raissinia, Airgo Networks
Vincenzo Scarpa, STMicroelectronics

Michael Seals, Conexant

Manoneet Singh, Texas Instruments
Massimiliano Siti, STMicroelectronics

Jason Trachewsky, Broadcom
Richard van Nee, Airgo Networks

Allert van Zelst, Airgo Networks

George Vlantis, STMicroelectronics

Mark Webster, Conexant

Richard Williams, Texas Instruments
Chris Young, Broadcom
2
 Introduction

The WWiSE group complete proposal [1] contains a new, optional, advanced forward error-correction (FEC) coding scheme. The structure of the WWiSE proposal retains the feature of IEEE 802.11a and IEEE 802.11g that the FEC is a distinct module within the system; thus the choice of specific code can to some extent be separated from overall system design.

The WWiSE complete proposal contains one code from the class of iteratively decodable codes. This partial proposal presents a design based around another class of iteratively decodable codes, the so-called “turbo” codes. The block lengths and strategies for handling latency are similar but not identical in the two proposals. Taken together, the proposals illustrate the viability and applicability of iteratively decodable codes in 802.11n and the range of design options available to the code designer. The two codes have comparable performance; performance depends on the number of iterations run so a definitive direct comparison is difficult to carry out.
The turbo code proposed is in most major respects identical to the turbo code already adopted in 3GPP/UMTS. This is a well-studied and understood code that has been extensively discussed in the research and engineering literature. The most significant change from the 3GPP/UMTS system is that new turbo interleavers are used. These are designed to avoid memory contention in the iterative decoding process, and thus aid receiver implementation while not sacrificing performance.

A discussion and performance results are given in the accompanying presentation material [2].

The proposal is partial, and so no functional requirements or comparison criteria compliance list is presented.
3 Specification

The proposal may be implemented by deleting Section 20.3.5.7 and the Appendix of [1], replacing the section with the following text, and adjusting all cross-references accordingly.
3.1 Turbo code frame format

The incoming data is divided into blocks and padded as follows.

1. Before scrambling, the payload sequence (i.e., the string resulting from appending the PSDU to the SERVICE field) is extended by padding with 0’s until it is a multiple of 512 bits in length. The pad bits are placed at the end of the sequence.

2. The service field at the beginning of the resulting sequence is used to initialize a scrambler, which is then used to scramble the rest of the sequence.

3. The resulting sequence is split, from beginning to end, into a series of codeword information bit sections of length 2048 and 512 as follows:

(a) there is always at least one, and no more than four 512-bit sections

(b) the 2048-bit sections precede the 512-bit sections.

3.2 PSDU Data Encoding

When the high performance coding bit in the SIG field is set, the DATA field is encoded using a rate 1/3 parallel concatenated convolutional code (“turbo code”) with a set of defined block lengths and puncturing patterns.

The incoming data is as framed by the procedure in Section 1. Each section generated via the procedure of Section 1 is encoded into a separate turbo code block. During encoding, an encoder output tail sequence is added to each turbo code block. If the total number of incoming data bits to a given turbo code block is Nturbo, the turbo encoder generates Nturbo/R encoded data output bits followed by 12 tail output bits, where R is the code rate after factoring in puncturing. The turbo encoder employs two systematic, recursive convolutional encoders connected in parallel, with a permuter (the turbo code “interleaver”) preceding the second recursive convolutional encoder.
Each of the two constituent encoders has transfer function Gi(D) = [1 n(D)/d(D)], where n(D) = 1 + D + D3 and d(D) = 1 + D2 + D3. Constituent encoder 1 has as input the uninterleaved input data stream. Constituent encoder 2 has as input the interleaved input data stream.

Each turbo code block is initialized with all zeros in the turbo encoder.

The encoded data output bits are generated by clocking the constituent encoders Nturbo and puncturing the outputs as specified in Section 5. Within a puncturing pattern, a ‘0’ means that the bit shall be deleted and a ‘1’ means that the symbol shall be retained. The constituent encoder outputs for each input bit period shall be output in the sequence X, Y1, Y2, X’, Y1’, Y2’ with the X output first, where X denotes the systematic bit, Y1 denotes the parity bit computed by constituent encoder 1, and Y2 denotes the parity bit computed by constituent encoder 2.
3.3 Turbo code termination

The turbo encoder shall generate 12 tail output bits following the encoded data output bits. The tail output bits are generated after the constituent encoders have been clocked Nturbo times. The first 6 tail output bits are generated by clocking constituent encoder 1 three times with input bits equal to the recursive component at the input, while constituent encoder 2 is not clocked. The last 6 tail output bits are generated by clocking constituent encoder 2 three times with input bit equal to the recursive component at the input, while constituent encoder 1 is not clocked. The output coded bits for each bit period shall be in the sequence (systematic bit) (parity bit), with the systematic bit first.

The required inputs and resulting outputs for each constituent encoder are summarized in Table 3-1. ti refers to the ith time instant.

Table 3-1 Trellis termination bits

	Encoder state
	Input bits
	Output bits

	D, D2, D3
	t1, t2, t3
	t1, t2, t3, t4, t5, t6

	000
	000
	000000

	001
	100
	110000

	010
	110
	101100

	011
	010
	011100

	100
	011
	011011

	101
	111
	101011

	110
	101
	110111

	111
	001
	000111

3.4 Turbo code interleaving

The turbo interleaver, which is part of the turbo encoder, shall block interleave the turbo encoder input sequence.

The formula relating interleaver output position (i) to input position i = 0, …, N1, where N is the block size, is

[image: image1.wmf](

)

(

)

ë

û

(

)

256

mod

256

256

mod

ρ

256

i

i

i

i

j

+

=

p

,
(LISTNUM eqn \l 1
where (j), j = 0,…,255, is a permutation of the set {0,1,…,255}, (j) = {0(j),1(j),(,M1(j)}, j = 0,…,255, is the j‑th permutation of the set {0,1,(,M1}, and M = N/256 is the number of windows.
Turbo interleaving shall be functionally equivalent to an approach where input sequence written in according to (() and read out sequentially.

Let the sequence of input addressed be i = 0, …, N-1. Then the sequence of output addresses shall be equivalent to those generated according to the procedure illustrated in Figure 4-1.

1. Determine the turbo interleaver parameter n, where n = log2(N)/8
2. Initialize an (n+8)‑bit counter to 0.

3. Extract the 8 least significant bits (LSBs) of the counter.

4. Use the 8 LSBs of the counter as the address into a read‑only memory (ROM), the output of which is M n‑bit values.

5. Extract the n (MSBs) of the counter and use them to select the p‑th of the M n‑bit ROM values, where p is the decimal value of the n MSBs of the counter. Left shift the result by 8 places to form the n MSBs of the output address.

6. Bit reverse the 8 LSBs of the counter to form the 8 LSBs of the output address.

7. Increment the counter and repeat steps 3 through 6 until all N turbo interleaver output addresses are obtained.

[image: image2.wmf]extract

n

MSBs

extract 8

LSBs

j

ROM

bit

reverse

M

 values

left shift

by 8

(

n

+8)-bit

counter

n

 MSBs

8

 LSBs

Figure 4-1. Turbo interleaver output address computation.

The function (j) is periodic with period P = 13 for block size N = 512 and P = 15 for block size N = 2048. The permutations (j) are given in Error! Reference source not found. for N = 512 and in Error! Reference source not found. for N = 2048.

Table 4-1. (j), j = 0,…,255, for N = 512.

	(j)
	jmod13

	{0,1}
	0

	{0,1}
	1

	{0,1}
	2

	{1,0}
	3

	{0,1}
	4

	{1,0}
	5

	{1,0}
	6

	{0,1}
	7

	{1,0}
	8

	{1,0}
	9

	{0,1}
	10

	{0,1}
	11

	{1,0}
	12

Table 4-2. (j), j = 0,…,255, for N = 2048.

	(j)
	jmod15

	{0,1,5,2,3,4,7,6}
	0

	{2,5,7,6,1,0,4,3}
	1

	{5,4,0,7,6,1,3,2}
	2

	{6,7,4,5,2,3,0,1}
	3

	{7,0,3,4,5,2,1,6}
	4

	{3,2,6,1,0,7,5,4}
	5

	{7,0,1,4,5,6,3,2}
	6

	{6,5,4,0,7,2,1,3}
	7

	{5,2,0,7,3,6,4,1}
	8

	{0,6,5,3,4,1,2,7}
	9

	{5,2,7,6,3,4,1,0}
	10

	{4,3,6,0,1,5,2,7}
	11

	{5,4,3,1,2,7,0,6}
	12

	{4,6,0,2,7,1,3,5}
	13

	{7,0,6,3,5,1,4,2}
	14

3.5 Turbo code puncturing
The puncturing pattern for each stream of bits is applied starting at the beginning of the stream of bits and continuing cyclically until the end of the stream.

3.5.1 Puncturing for codewords with 2048 information bits

The puncturing patterns for each stream for 2048 bit blocks are determined from Table 5-1 as follows.

Systematic bits: Any pad bits added via the procedure in Section 1 shall be punctured. The other systematic bits shall not be punctured.

Parity bits from the two constituent encoders are determined according to Table 5-1, where 1 denotes a retained bit and 0 denotes a punctured bit. The leftmost bit is first in time and the pattern repeats until the end of the codeword.

Table 5-1: Puncturing patterns for constituent encoders, 2048-bit blocks:
	Code rate R
	Puncturing pattern for constituent encoder 1
	Puncturing pattern for constituent encoder 2

	2/3
	1000
	0010

	3/4
	010000
	000010

	5/6
	0000000100
	0010000000

3.5.2 Puncturing for codewords with 512 information bits

The puncturing patterns for each stream for 512 bit blocks are determined from Table 5-2 as follows. Note that the code rate within these blocks is less than the overall target code rate.

Systematic bits: Any pad bits added via the procedure in Section 1 shall be punctured. The other systematic bits shall not be punctured.

Parity bits from the two constituent encoders are determined according to Table 5-2, where 1 denotes a retained bit and 0 denotes a punctured bit. The leftmost bit is first in time and the pattern repeats until the end of the codeword.

Table 5-2: Puncturing patterns for constituent encoders, 512-bit blocks:
	Overall code rate R
	Puncturing pattern for constituent encoder 1
	Puncturing pattern for constituent encoder 2

	2/3
	01
	10

	3/4
	010
	100

	5/6
	010
	100

4
References

1. IEEE doc. 802.11/04-0886-00-000n, “WWiSE Group PHY and MAC specification,” M. Singh, B. Edwards et al .

2. IEEE doc. 802.11/04-0951-00-000n, “WWiSE Group Partial Proposal on Turbo Codes: Presentation,” S. Coffey et al.

Submission
page 6
S. Pope, et al., WWiSE group

_1152966503.unknown

_1152970987.vsd

