November 2001

doc.:IEEE 802.11-01/556r0

IEEE P802.11
Wireless LANs

AES Associated Data Optimizations (updated draft text)

Date:
November 9, 2001

Authors:

Nancy Cam-Winget

Atheros Communications, Inc.

529 Almanor Ave, Sunnyvale Ca. 94085

Phone: 408-773-5317

e-mail: nance@atheros.com

and

Jesse Walker

Intel Corporation

2211 NE 25th Avenue

Hillsboro, Oregon 97124

Phone: +1 503 712 1849

Fax: +1 503 264 4843

e-Mail: jesse.walker@intel.com
Abstract

This submission includes modifications for the TGi draft text relating to proposed optimisations for protecting data sent in the clear when using AES for protecting traffic. The descriptions for the changes to the TGi draft text are described in document IEEE 802.11-01-556r1-I-AES Associated Data Optimization.ppt . The section numbers used in this draft correspond to section numbers used in the TGi v1.5 draft.

8.2.3.3.2 OCB mode encipherment

OCB is 802.11 ESN’s mode of operation for AES. The OCB algorithm employs the AES block cipher to achieve both data privacy and authenticity using one shared key, K and a single nonce. In OCB mode, the nonce need not be pseudo-random, the only constraint in the use of the nonce is that it must never be reused with the same key, K. This relaxation of assumptions made by many other modes make allows AES Privacy to use a replay sequence counter as basis of the nonce. The replay counter is a 28bit counter that can be employed to detect replay attacks. A full description of how the replay counter is used follows in sub-clause 8.2.3.5.3 below. Sub-clause 8.2.3.5.3.3 also describes the nonce composition algorithm.

Note: A nonce is a never-repeated value. For OCB mode this means that the nonce is never repeated with the same key.

[image: image1.wmf]AES

Nonce

Composition

Offset

0

L

K

 AES

M

m

K

Offset

m+1

Offset

m+1

L

ntz(m+1)

Bit Length

L

-1

Pad

AES

M

1

K

Offset

1

Offset

1

Offset

1

L

1

AES

M

m-1

K

Offset

m

Offset

m

Offset

m

L

ntz(m)

AES

M

2

K

Offset

2

Offset

2

Offset

2

L

2

K

AES

M

1

 +

...+ M

m-1

 + Zm + C

i

0*

Offset

m+1

Prefix

128bit MIC

Z

m

Replay Counter C

1

 C

2

 C

m-1

 C

m

 MIC

Figure 1 - AES Encipherment Block Diagram

Referring to Figure 1 and following from left to right and top to bottom, AES-OCB encipherment begins with a key K that has been distributed to cooperating parties by an external key management service.

The OCB encipherment algorithm partitions the plaintext data into m 128-bit blocks, {M1, M2, …, Mm} where

[image: image2.wmf]ú

ú

ù

ê

ê

é

=

128

M

m

The notation (a(means to round the value a up to the nearest integer—usually called the ceiling function. The number of blocks to be encrypted, m, also determines how big the offset codebook must be : (log2 m (. The offset codebook value, L, is used to compute the Offset value employed by the encryption process. Once a key K has been established, it is used to encrypt a 128-bit zero string (0128) to produce the first entry of the offset codebook, L:

L0 = AES_EncryptK(0128)

The remaining entries in the offset codebook are derived from L0 by applying a finite field multiplication:

for i=1 to (log2 m (Li = Li(1 (x

and L(1 = L0 (x(1
On each use of OCB mode, the implementation must select a unique Nonce value. This means that an AES Privacy-capable implementation must provide a new Nonce for each frame it encapsulates. As is typical in many encryption algorithms, the Nonce is a value that is used to perturb the encipherment to ensure both data privacy and integrity. As AES utilizes 128-bit blocks, the Nonce is a 128-bit value. The Nonce is composed of the replay counter, the source MAC address and, if specified, the QoS traffic class selector field. The composition of the Nonce is fully described in section 8.2.3.5.3.3. In OCB mode, the Nonce value is used during initialization to compute the first offset value for encryption:

Offset0 = AES_EncryptK (Nonce (L0)

The Offset value is used to both pre-whiten and post-whiten data as part of the encryption process. The initial Offset0 value is used to compute the subsequent offsets used in the encipherment of the ciphertexts Ci:

Offseti = Offseti-1 (Lntz(i)
The following describes how to employ AES encryption in OCB mode to encrypt the data to be protected and then how to compute the MIC.

As stated earlier, OCB mode encryption begins by partitioning the data into m 128-bit blocks. Let M1, M2, …, Mm denote the data blocks of data. Block i for i = 1, 2, …., (m–1) is transformed into ciphertext, Ci, by pre-whitening the block with Offset by xor’ing the two values together, then AES encrypting the result under the key K and then post-whitening the encrypted result with the same Offseti:

Ci = AES_EncryptK(Mi (Offseti) (Offseti
Since the final data frame might not be an exact multiple of 128-bits, the algorithm treats it differently to account for its true block length. Rather than pre-whitening the last block Mm , its bit length is xor’ed with both L(1 and Offset then AES encrypted. The first |Mm| bits of the resulting encryption is then xor’ed with the block, Mm to arrive at the last ciphertext block, Cm .

The last ciphertext block, Cm, is computed by first AES encrypting the pre-whitened bit length of the last block Mm and then post-whitening the encrypted result. The pre-whitening is achieved by xor’ing the bit length of block Mm , L(1 and Offsetm. The post-whitening is achieved by xor’ing the last block, Mm and the first | Mm | bits of the encrypted result. Thus the last ciphertext block is

Zm = AES_EncryptK (|Mm | (L(1 (Offsetm)

Cm = Mm ((the first | Mm | bits of Zm)

Here the value of |Mm|—the length of Mm in bits—is represented as a big-Endian integer. Note that the last ciphertext block, Cm is also the same bit length as its corresponding data block Mm.

The MIC is computed from the plaintext, the encrypted pre-whitened last block length (Zm), the last ciphertext bock, Cm and Offsetm.:

MIC = AES_EncryptK (M1 (M2 (….(Mm-1 (Zm (Cm0* (Offsetm+1)

where Cm0* denotes the padding of the last ciphertext block, Cm with zeroes to comprise a full 128-bit block. The above computation of the MIC results in a full 128 bit integrity check value which must then be truncated to 64 bits. That is to say, for the 802.11 AES Privacy implementation of OCB, only the first 8 bytes of the above MIC will be sent in the frame.

8.2.3.3.3 OCB mode decipherment

Referring to Figure 2 and following from left to right and from bottom to top, AES-OCB decipherment begins with a key K that has been distributed to cooperating parties by an external key management service. The decipherment algorithm basically reverses the encipherment process. First the data is decrypted, and then the MIC is checked.

[image: image3.wmf]AES

Nonce

Composition

Offset

0

L

K

 AES

M

m

Offset

m+1

Offset

m+1

L

ntz(m+1)

Bit Length

L

-1

K

AES

Offset

m+1

Prefix

128bit MIC

M

1

K

Offset

1

Offset

1

L

1

Offset

1

AES

-1

M

2

K

Offset

2

Offset

2

Offset

2

L

2

AES

-1

M

m-1

K

Offset

m

Offset

m

L

m

Offset

m

AES

-1

M

1

 +

...+ M

m-1

 + Z

m

+ C

i

0*

K

Z

m

Pad

Replay Counter C

1

 C

2

 C

m-1

 C

m

 MIC

Tag

==

MIC

?

Tag

Figure 2 - AES Decipherment Block Diagram

Initialization is the same as encipherment. The ciphertext block Ci, where i=1, 2, ….m(1 is transformed into data block Mi by un-post-whitening the block with Offseti, decrypting the result, and then un-pre-whitening the decrypted un-post-whitened result. This gives plaintext block Mi.:

Mi = AES_DecryptK(Ci (Offseti) (Offseti

As the last plaintext block was treated differently in encipherment, the transformation reflects similar steps to recover the last block of plaintext data. The last plaintext block, Mm, is computed by first AES encrypting the pre-whitened bit length of the last block Cm (whose value is represented as a big-Endian integer, as usual) and then post-whitening the encrypted result. The pre-whitening is achieved by xor’ing the bit length of block Cm , L(1 and Offsetm. The post-whitening is achieved by xor’ing the last block, Cm and the first | Cm| bits of the encrypted result. Thus the last plaintext block is

Zm = AES_Decrypt(|Cm | (L(1 (Offsetm)

Mm = Cm ((the first |Cm | bits of Zm)

Once the message is decrypted, the MIC can be computed based on the deciphered plaintext. The computed MIC can be checked against the one provided with the OCB ciphertext. For AES Privacy, only the first 8 bytes (e.g. 64-bits) are bit-wise compared. If the two do not match, then the OCB ciphertest (or its tag) has been altered in transit; if the two match, then it is extremely unlikely (1 chance in 264) for the OCB data or its tag to have been altered.

8.2.3.4 AES Privacy MSDU expansion

Figure 3 shows the encrypted MSDU as constructed by WEP when using AES Privacy, specified in the next sub-clause.

[image: image4.wmf]

Data

(PDU)

>=1

MIC

8

Note: The encipherment process has expanded the original MSDU by 14 Octets, 4 for the replay counter field,

and 8 for the Message Integrity Check (MIC). As the

 Replay counter field is also used in the Nonce construction,

it replaces what has been known as the IV field.

Encrypted

(Note)

Replay

Counter

4

KeyID

= 0x00

Replay Sequence No

Figure 3 - Construction of Expanded AES MPDU

The AES Privacy mechanism is invisible to entities outside the 802.11 MAC data path.

8.2.3.5 AES Privacy specification

802.11 AES Privacy consists of three parts: a key derivation procedure, an encapsulation procedure, and a decapsulation procedure. It is based on 128-bit AES in OCB mode.

The three steps are used as follows:

a) Once an association is established and a key for the association is agreed upon, the 802.11 MAC uses the key derivation algorithm to derive the cryptographic keys from the (Re)association Request and Response and the association key K. This will produce separate transmit and receive keys for each association peer. The transmit key of one party becomes the receive key of the other, and vice versa. The implementations also initialize synchronized association state at this time, described in more detail below.

b) Once the transmit key has been derived and its associated state initialized, the 802.11 MAC uses the encapsulation algorithm with the transmit key and the state to protect all unicast MSDUs it sends over the association.

c) Once the receive key has been derived and associated state initialized, the 802.11 MAC uses the decapsulation algorithm with the receive key and state to decapsulate all unicast MSDUs received over the association. Once the keys are known to be established by both association peers, the MAC must discard any MDSUs received over the association that are unprotected by the encapsulation algorithm.

 Upper Layer Authentication may also assign a broadcast/multicast key. The implementation uses this key as configured, without derivation. Once this is established, the MAC treats it just as a derived key: it utilizes the to protect all broadcast/multicast MDSUs it sends, and discards any broadcast/multicast MDSUs received that are not protected by this key. As for unicast keys, some broadcast/multicast state is initialized whenever the broadcast/unicast key is set.

The data overhead of the AES Privacy algorithm is 12 bytes with this construction. This includes a 28-bit replay counter, the single KeyID byte inherited from WEP, and a 64-bit Message Integrity Code (MIC) used to detect forgeries.

Note 1. The AES Privacy algorithm assumes Upper Layer Authentication. AES Privacy may employ statically configured keys if the Upper Layer Authentication implementation supports these, but how this is accomplished is an implementation question outside the scope of this specification.

Note 2.The quality of protection any key offers with any cryptographic algorithm degrades through key usage, and it is impossible to estimate when the protection a key affords has been exhausted without keeping count of the number of blocks protected. In order to avoid maintaining a history of all MSDUs used with every key, this practically means that a fresh, never-used-before key is required whenever a new “session” begins, so that keys really cannot be used independently of some notion of a session. Similarly, the replay protection counter assumes that peers somehow synchronize a fresh key whenever they reinitialize their replay state, again to avoid having to maintain history of every MSDU received. The 802.11 AES Privacy algorithm identifies unicast key “sessions” with 802.11 associations and uses (Re)association messages for the synchronization function, and a random nonce exchange and key derivation to effect fresh keys. An IBSS desiring to use the AES Privacy algorithm must therefore implement (Re)association messages.

Note 3. The AES Privacy algorithm architecturally lies above the 802.11 retry function. This is required since an MDSU may be accepted by the local 802.11 implementation but its acknowledgement lost in transit to the peer. If the AES Privacy algorithm were to lie below the 802.11 MAC retry function, then it would be impossible to recover from this state, as the replay protection function would discard all further retries.

Note 4. AES integrity may protect data that is sent in the clear, this data is referred to as associated data. This data may be protected by inclusion in the nonce or by comprising additional data blocks that are fed through the OCB encipherment process. In 802.11, the associated data is comprised of the source and destination MAC address and the QoS traffic class. Since these fields are fixed and comprise a block less than 16bytes, it can be protected by inclusion in the nonce, a technique called nonce-stealing. By including these fields in the nonce composition, the fields are protected. That is, a change in any of these fields will result in a different nonce value and thus a different data encryption.
8.2.3.5.2 Transmit State

Each conformant 802.11 system implementing the AES Privacy algorithm must maintain the following unicast transmit state for an association:

a) the association OCB context, based on the derived transmit key. This consists of at least the transmit key, as specified above in Clause 8.2.3.5.1, or its key schedule; it may also include one or more pre-computed OCB offsets corresponding to the key;

b) a 28-bit sequence counter for each QoS traffic class utilized by this association; the implementation uses each of these to construct unique per-MSDU nonces. The value of each replay counter of the state must be set to zero when the corresponding transmit key is derived; and

c) a 48-bit counter 802dot11SentAesBlocks, to count the total number of blocks protected by the association transmit key and AES Privacy algorithm across all QoS traffic classes, initially set to zero. The implementation must use this to limit the total number of blocks that may be protected by a single key.

This state is called the STA’s transmit unicast context for this association.

Note. If QoS traffic classes are not in use, there is only a single 28-bit sequence space.

The broadcast/multicast transmit state a conformant implementation must maintain is similar, with the BSS broadcast/multicast key replacing the association transmit key, viz.,

a) the OCB context corresponding to the configured BSS broadcast/multicast key or its key schedule; it may also include one or more pre-comupted OCB offsets;

b) a 28-bit replay counter for each QoS service class utilized with broadcast/multicast transfers in this BSS; this is used to construct the per-MSDU nonce; unlike unicast MSDUs it is not used for replay protection. The value of each replay counter of the state is set to zero when the corresponding transmit key is derived; and

c) a 48-bit counter 802dot11SentAesBlocks, to count the total number of blocks protected by the broadcast/multicast key across all QoS service classes, using AES Privacy algorithm, and initially set to zero. This is used to place an absolute upper bound the total number of blocks that this STA may protect by the key.

This state is called the STA’s broadcast/multicast context. This specification refers to either state as transmit context or simply context when there is no ambiguity.

As an implementation note, for software implementations it can be computationally more efficient to compute and maintain the AES-OCB key schedule rather than save the key itself. Unlike WEP, the key schedule need be initialized only once per association, not for every MSDU.

8.2.3.5.3 AES Privacy encapsulation algorithm

To encapsulate MSDU plaintext data, an implementation must output the data that would be produced by executing the following steps:

a) Select the appropriate context based on the MSDU;

b) Increment block count and the appropriate replay counter, based on the MSDU service class;

c) Construct the Replay-Counter field of the final AES-protected MSDU payload.

d) Construct the OCB nonce using the Replay-Counter, MSDU service class, destination and source MAC addresses;

e) AES-OCB encrypt the MSDU
f) Construct the MSDU payload from the replay counter, OCB encrypted data, and the OCB tag.

The following sub-clauses describe each of the steps in greater detail.

8.2.3.5.3.1 Context Selection

To encrypt data, the transmitter first checks whether the MSDU is unicast or multicast/broadcast. It selects the correct transmit context, described in Clause 8.2.3.5.2 above, depending on whether this is a unicast or a broadcast/multicast MSDU, and upon the association over which the MSDU must travel. If an appropriate transmit context exists, a conformant implementation must use it to protect any MSDU it sends. In particular, the AES Privacy algorithm does not support different protections on different QoS traffic classes within a single association. An 802.11 STA or AP may, however, support different protections on different associations.

8.2.3.5.3.2 Increment the block count and replay counter

The implementation computes the total number of blocks to be protected in the MSDU. This is defined as

m = ((# MSDU data bytes)/AES-Block-Size(+1,

where (a(means, as before, to round a up to the nearest integer, and AES-Block-Size = 16 (bytes). The 1 is added to include the Associated Data, described in clause 8.2.3.5.3.4 below, in the total block count.

If adding the number of blocks m would cause the context’s value of 802dot11SentAesBlocks to wrap—i.e., if m + 802dot11SentAesBlocks > 248—then the cryptographic protection afforded by the key are considered exhausted, and it is a protocol error to use the key any further. The sender must not transmit another MSDU on the association or broadcast/multicast channel protected by the key until it is replaced with a new one. The encapsulation algorithm must halt with an error in this case.

Otherwise, from the selected context and the MSDU QoS traffic class, the implementation selects appropriate 28-bit per-service-class replay counter. If QoS traffic classes are not in use, there is only one replay counter for the entire association.

If the value of the selected replay counter is 228–1 = 268435455 (or greater), then another valid nonce cannot be constructed. That is, using this replay counter means that more than one MSDU would be protected by the same <key, nonce> pair, voiding the security guarantees. Once again, the sender must not transmit another MSDU on this association or broadcast/multicast channel until the key is replaced, and the encapsulation algorithm must halt with an error.

Otherwise, the value of the selected replay counter is less than 268435455, and it is still feasible to construct another valid nonce. The implementation adds m to 802dot11SentAesBlocks and 1 to the replay counter, and proceeds to the next step.

Note: The value 248 was selected by the following reasoning. The proof of OCB mode security indicates the insecurity of the construction increases as O(s2/2128), where s is the total number of blocks protected. If A is the probability that an adversary can break the underlying block cipher AES, then the choice of s = 248 bounds chances of breaking AES-OCB mode to no more than approximately A + (248)2/2128 = A + 1/232; that is, using a single key in OCB mode over 248 blocks does not greatly increase the adversary’s chances over breaking a single block encrypted under AES. On the other hand, the replay counter is transmitted with the encrypted data, and it is necessary to minimize the number of bits transmitted through the wireless medium; further, it is desirable to use an odd number of bytes for the sequence number, so the existing WEP KeyID byte could be maintained to simplify hardware implementations. This limited the choices to 24-bits, 28-bits, 40-bits, 56-bits, etc. 24-bits is too small, but security decays too much with 56-bits. While 40bits can be selected, it requires the counter to be interspersed in the replay sequence number field as the keyID bits are in fixed bit positions 30 and 31. However, if we expand from 24-bits to 28-bits, it allows us to maintain a 32-bit replay sequence number field and enough blocks to be processes with a reasonable lifespan for the key.Adding 12 more bits to this total permits multi-block messages across many service classes.

8.2.3.5.3.3 Encode the Replay-Counter

As defined in Clause 8.2.3.4 above, the AES Privacy algorithm Replay Counter is a four-byte field. It is used to convey the MSDU sequence number to the peer, which itself is utilized to construct the nonce and to detect replayed MSDUs. This field is constructed as follows:

The replay counter computed in clause 8.2.3.5.3.2 is encoded into the Replay-Counter field. This is accomplished by first encoding the number as a 28-bit big-Endian integer BEI. Next the three most significant bytes of BEI are encoded into the first three bytes of the Replay-Counter field. Following these three bytes the remaining 4-bits is concatenated with the 2 KeyID bits. Symbolically,

BEI (Big-Endian(replay counter)

Partition BEI into a sequence of 4 bytes: BEI = BEI1 || BEI2 || BEI3 || BEI4
BEI4 = BEIbit25 || BEIbit26 || BEIbit27 || BEIbit28 || 04
KeyID (06 || keyidbit1 || keyidbit2
Replay-Counter (BEI1 || BEI2 || BEI3 || (BEI4 ^ KeyID)
This format matches the Basic WEP IV field, with the exception of the use of the first nibble in the keyID byte. This format is intended to simplify the hardware implementations that must be backward compatible with Basic WEP.

8.2.3.5.3.4 Construct the OCB nonce

OCB mode requires a unique nonce be used for each message it encrypts for its security guarantees to be valid. Using the just-created Replay-Counter from clause 8.2.3.5.3.3, the implementation must construct the OCB nonce as the concatenation of (a) the sequence number encoded as a big-Endian value- i.e., with its most significant bit first and least significant bit last, (b) its QoS traffic class, (c) the MSDU source MAC address, and (d) the MSDU destination MAC address. Since the QoS traffic class is only 4-bits, we concatenate it with the 28-bit replay counter to comprise an integral number of bytes:
nonce (Replay Counter || QoS-Traffic-Class || Source-MAC-Address || Destination-MAC-Address
If QoS traffic classes are not in use, the QoS-Traffic-Class value is 04, i.e., 4 bits of zero. The Source-MAC-Address, Destination-MAC-Address and QoS-Traffic-Class are encoded in the nonce in the same byte order as in their MSDU encoding. This nonce construction guarantees nonce unicity of these values. Notice Source-MAC-Address may differ from the 802.11 transmit address. Similarly, the Destination-MAC-Address may differ from the 802.11 receiver address.
Note. It is feasible for an 802.11 implementation to construct a duplicate nonce by using the wrong station’s MAC address as the source or destination MAC address, but such a construction is non-conformant. This can be a security problem for broadcast/multicast. If a deployment experiences a rash of duplicate nonces for broadcast multicast, it may indicates either a non-conformant implementation, a “traitor” within the BSS—i.e., a party intentionally misbehaving—or a compromise of the BSS broadcast/multicast key.

a)
b)
c)
d)

8.2.3.5.3.6 Protect the MSDU and associated data

The implementation must use the AES transmit key TK constructed in clause 8.2.3.5.3.1 and the nonce constructed in clause 8.2.3.5.3.3 to OCB encrypt the plaintext MSDU data. This results in two outputs:

a) An OCB-ciphertext string. This string contains the same number of bytes as the MSDU plaintext data; and

b) A 64-bit OCB-tag.

Symbolically,

OCB-ciphertext || OCB-tag (OCB-Encrypt(TK, nonce, MSDU-data)

where OCB-Encrypt(A, B, C) denotes encrypting its third parameter C under key A and salt or nonce B.

8.2.3.5.3.7 Construct the MSDU payload

Finally, all the elements are assembled in the final MSDU payload. The AES Privacy-protected MSDU payload consists of the concatenation of the Relay_Counter field, the OCB-ciphertext, and the OCB-tag:

MSDU-Data (Replay-Counter || OCB-ciphertext || OCB-tag.

Here, the Replay Counter field was computed in Clause 8.2.3.5.3.6, and OCB-ciphertext and OCB-tag in Clause 8.2.3.5.3.5.

8.2.3.5.4 Receive State

A conformant implementation must maintain the following unicast receive state for an association using the AES Privacy algorithm:

a) the OCB context base on the derived association receive key RK or its key schedule; this can also include one or more pre-computed OCB offset blocks;

b) a replay window for each QoS service class utilized for this association. The window is initialized by setting the replay counter to zero. That is, no replay sequence numbers have been consumed when the corresponding receive key is derived;

c) a 32-bit counter 802dot11AesFormatErrors, to indicate the number of MSDUs received with an invalid format, initialized to zero;

d) a 32-bit counter 802dot11SpentKeyErrors, to indicate the number of MSDUs received since all the entropy of the context’s receive key was consumed;

e) a 32-bit counter 802dot11AesReplays, to indicate the number of received unicast fragments discarded by the replay mechanism, initialized to zero;

f) a 32-bit counter 802dot11AesDecryptErrors, to indicate the number of received fragments discarded by the OCB decryption mechanism, initialized to zero; and

g) a 48-bit counter 802dot11RecvdAesBlocks, to track the total number of protected blocks received.

This specification refers to this as the unicast receive context.. Note that an AP must also include a context type, indicating that this context record provides context for the AES Algorithm (as opposed to, e.g., Basic WEP).

When a broadcast/multicast key is configured, the implementation must maintain a similar receive state for broadcast/multicast receive state, with the BSS broadcast/multicast key replacing the association transmit key, viz.,

a) an OCB context based on the configured BSS broadcast/multicast key or its associated key schedule; it may also contain one or more pre-computed ;

b) a 32-bit counter 802dot11AesFormatErrors, to indicate the number of MSDUs received with an invalid format, initialized to zero;

c) a 32-bit counter 802dot11SpentKeyErrors, to indicate the number of MSDUs received since all the entropy of the context’s broadcast/multicast key was consumed;

d) a 32-bit counter 802dot11AesReplays, to indicate the number of received unicast fragments discarded by the replay mechanism, initialized to zero;

e) a 32-bit counter 802dot11AesDecryptErrors, to indicate the number of received fragments discarded by the OCB decryption mechanism, initialized to zero; and

f) a 48-bit counter 802dot11RecvdAesBlocks, to track the total number of protected blocks received.

This is called the broadcast/unicast receive context.

Note 1: A broadcast/multicast receive context maintains no replay window. This is because it is in principle impossible to detect broadcast/multicast replays using symmetric key techniques. In particular, any party holding the broadcast/multicast key can masquerade as any other member of the group, so can intrude on another’s sequence space without detection.

Note 2: Rather than save the key itself, it is often computationally more efficient to compute the AES-OCB key schedule once and then maintain it over the serious of all MSDUs received. Implementations may do this, since functionally it is indistinguishable from recomputing the key schedule on each MSDU.

8.2.3.5.5 AES Decapsulation Algorithm

The steps to decapsulate data received over a protected association or broadcast/multicast channel are the reverse of the encapsulation steps:

a) Select the appropriate context based on the received MSDU;

b) perform some basic sanity checks on the packet;

c) construct the OCB nonce using the Replay-Counter, QoS Traffic Class, the destination MAC address and the source MAC address from the received MSDU;

d)
e) using the constructed nonce and receive key from the selected context, decrypt the MSDU data;

f) If the MSDU is unicast, extract the sequence number from the MSDU Replay-Counter field and verify the MSDU is not a replay.

The following sub-clauses describe each of the steps in greater detail.

8.2.3.5.5.1 Select Context

The recipient must select the appropriate context for the received MSDU based on the Transmit and Receive MAC addresses and the KeyID bits. If the Receive address is broadcast/multicast, then the selected context becomes the broadcast context. If not, the receiver verifies there is a unicast context for the frame. If the selected context is for the AES Privacy Algorithm, then the receiver continues with the AES Privacy decapsulation algorithm.

Note that if the AES Privacy algorithm is utilized by an association, the receiver must treat all MSDUs as protected. Without this provision, it is trivial for an attacker to forge a valid message by simply sending a cleartext message. Hence all implementations must maintain some state indicating whether AES Privacy protection should be applied to received MSDUs, whether or not the WEP bit from the MAC header is asserted, and whether or not the KeyID bits are actually zero.

8.2.3.5.5.2 Basic sanity checks

If an applicable AES context is present, the receiver must discard the received MSDU if it does not consist of at least 17 bytes and increment the context’s 802dot11AesFormatErrors counter. This includes 3 bytes of LLC header, and 12 bytes of AES Algorithm overhead bytes.

A second check is the total number of blocks. The implementation computes the total number of blocks protected in the MSDU. This is defined as

m = ((# MSDU data bytes – 12)/AES-Block-Size(+1,

where (a(means to round a up to the nearest integer, and AES-Block-Size = 16. The 1 is added to account for the encrypted associated data that was not sent with the message but will be reconstructed in Clause 8.2.3.5.5.5 below. The 12 is removed to account for the MSDU Replay Counter field and the OCB-tag field.

If adding the number of blocks m will cause the value of 802dot11RecvdAesBlocks from the context selected in clause 8.2.3.5.5.1 to wrap—i.e., if m + 802dot11RecvdAesBlocks > 248—then the cryptographic protection afforded by the key are considered exhausted, and it is a protocol error to use the key any further. The receiver must discard the MSDU and increment the context’s 802dot11SpentKeyErrors counter. The decapsulation must algorithm halts with an error in this case.

1.1.1.1.1.1 8.2.3.5.5.3 Construct the OCB nonce

The MAC implementation constructs the OCB nonce as the concatenation of (a) the Replay-Counter, (b) its QoS traffic class, (c) the received MSDU’s source MAC address, and (d) the received MSDU’s destination MAC address:
nonce (Replay Counter || QoS-Traffic-Class || Source-MAC-Address || Destination-MAC-Address
Here the Source-MAC-Address, Destination-MAC-Address and QoS-Traffic-Class are taken in the same byte order as they are encoded into the MAC header of the MSDU. If QoS traffic classes are not in use, the value of QoS-Traffic-Class is taken to be 04, i.e., four bits of zero. Since the QoS-Traffic-Class is only a 4-bit field, it is prepended to the 28-bit replay counter to comprise an integral number of bytes.
[See editor’s suggested comment in clause 8.2.3.5.3.4 regarding KeyID byte usage]

1.1.1.1.1.2

8.2.3.5.5.5 Decrypt the MSDU data

Use the nonce constructed in clause 8.2.3.5.5.4 and the AES key from the context selected in clause 8.2.3.5.5.1 to OCB decrypt the encrypted data from the received MSDU. By definition, this consists of

data-to-decrypt (MSDU-ciphertext || OCB-tag.

The OCB decryption algorithm will result in one of two outputs:

a) A verification of the tag, and the decrypted plaintext;

b) Failure, because the decryption algorithm detected a change in the underlying data.

If the OCB decryption reports failure, the receiver must increment the context’s 802dot11AesDecryptErrors counter, and the decapsulation algorithm must halt.

[Editor’s note: if we were to use the full 128-bit OCB tag for the MIC, then it would be unnecessary to do an encryption at the receiver. This would add 8 bytes of overhead to every packet, however.]

8.2.3.5.5.6 Unicast replay verification

If the received MSDU was unicast, the last check determines whether it is fresh or represents a replay. The receiver skip must this step for broadcast/multicast MSDUs, because it is infeasible to reliably determine replays using symmetric key techniques, and public key techniques are too expensive for bulk data handling.

The MSDU sequence number is needed to provide replay protection. The little-Endian encoding of the MSDU sequence number can be extracted from the Replay-Counter field by dropping the last 4 bits storing the KeyID bits:

if Replay-Counter = RC1 || RC2 || RC3 || RC4 then
Big-Endian(SeqNum) (RC1 || RC2 || RC3 || (RC4 & 0xf0)
To determine whether a unicast represents a replay, the receiver tests whether the MSDU replay counter SeqNum extracted from the MSDU Replay Counter field is a fresh value. It is fresh if the pair <QoS-Service-Class, SeqNum> has never been received in a valid MSDU for the context’s key, and is declared a replay otherwise. If the MSDU’s sequence number is a replay, the receiver discards the MSDU, increments the 802dot11AesReplays counter, and halts the decapsulation.

The 802.11 implementation may use any suitable technique to guarantee that the pair <QoS-Traffic-Class, SeqNum> is fresh—e.g., it might maintain a sliding replay window, or it can maintain a list of all MSDU sequence numbers correctly received, etc.

Note: A replay window of size 1 is sufficient provided QoS does not re-order MSDUs within a traffic class. Otherwise, a more complex mechanism is needed. This note outlines one possible implementation of a replay window scheme as explanatory, non-normative text. This is to help clarify how such schemes work.

The receiver maintains an n-bit bit-map M, where n is implementation specific, and a 40-bit sequence number S for each QoS traffic class. The sequence number indicates the upper edge of the window, and the bit map represents the state of the window. Both the sequence number S and the bit-map M are initialized to 0:

S (0; M (0

When a unicast MSDU arrives, the receiver compares its sequence number againt this state. If the sequence number of the received MSDU exceeds S, the receiver shall advance the window:

M <<= (seqNum – S); M |= 0x01; S (SeqNum
The first operation M <<= (seqNum – S) left-shifts the bit-map M by (seqNum – S) bites; this, of course, may zero the bit map if (seqNum – S) > n. The second operation M |= 0x01 sets the least significant bit of M, saying that this packet has been received. The final operation S (SeqNum resets the top of the window.

If the sequence number of the received MSDU does not exceed S, then the algorithm checks for a replay. If (S – SeqNum) (n, then by definition the MSDU is a replay, because it falls outside the replay window defined by M and S. Otherwise the implementation may compute d = (S – SeqNum) and test whether bit d of M is set. If so, then the MSDU represents a replay; if not, then the received MSDU is fresh, and the receiver sets bit d of the bit-map M.

if (d ^ M = 0) then M |= (1 << d) else discard MSDU

8.2.3.5.5.7 Completion

If the MSDU has not been discarded due to the processing described in Clauses 8.2.3.5.5.1 through 8.2.3.5.5.6, then the receiver must update the 802dot11RecvdBlocks counter by adding to it the value b computed in Clause 8.2.3.5.5.2, to indicate the number of blocks decapsulated, and the decapsulation completed successfully.

8.2.3.5.3.8 Discussion

As a practical matter an implementation generally will validate the Replay-Counter of a received unicast MSDU early in the receive decapsulation process. This minimizes the expenditure of resources on a forged MSDU. However, the sequence number extracted from the Replay-Counter field cannot be trusted as valid until after the AES-OCB decryption step

Submission
page 3
Cam-Winget and Walker

_1066306645.vsd

_1066306719.vsd

_1066306944.doc

Encrypted (Note)

KeyID

= 0x00

Replay Sequence No

Data

(PDU)

>=1

MIC

8

Note: The encipherment process has expanded the original MSDU by 14 Octets, 4 for the replay counter field, and 8 for the Message Integrity Check (MIC). As the Replay counter field is also used in the Nonce construction, it replaces what has been known as the IV field.

Replay Counter

4

_1055155774.unknown

