October 2001

doc.:IEEE 802.11-01/550r1

IEEE P802.11
Wireless LANs

Temporal Key Hash

Date:
October 31, 2001

Authors:

Russ Housley

RSA Laboratories

918 Spring Knoll Drive

Herndon, Virginia 20170

Phone: +1 703-435-1775

E-mail: RHousley@rsasecurity.com

and

Doug Whiting

Hifn

5973 Avenida Encinas, Suite 110

Carlsbad, California 92008

Phone: +1 760-827-4502

E-mail: DWhiting@hifn.com

Abstract

As part of an overall solution to the many security problems with WEP, this paper describes a proposal for processing of a temporal key to derive a per-packet key. The process is divided into phases. To improve performance, implementations are likely to cache the output of the first phase.

1 Motivation

IEEE Std 802.11-1999 is a wireless LAN standard. The standard includes a security protocol called WEP that is intended to provide security equivalent a wired LAN. Unfortunately, WEP includes many flaws. This proposal is intended to address two of the flaws:

· The reuse of IV values, which leads to the reuse of RC4 key streams, which leads to a data recovery attack.

· A correlation between the combination of the IV and RC4 key with the first RC4 key stream byte, which leads to a key recovery attack.

In WEP, it is necessary to generate a different RC4 key for each packet from a shared key. WEP concatenates the IV and the key. The key-scheduling algorithm of RC4 is too lightweight for this purpose, particularly when the initial few bytes of plaintext are easily predictable (as is the case when SNAP/SAP is used to carry IP datagrams). Ron Rivest, the author of RC4, suggested two solutions to the weaknesses in the RC4 key-scheduling algorithm. He recommends discarding the first 256 output bytes of the pseudo-random generator before beginning encryption. Alternatively, he recommends strengthening the key-scheduling algorithm by preprocessing the key and the IV by passing them through a hash function such as MD5. Discarding the first 256 output bytes is expensive, and it is impossible for some implementations.

One-way hash functions, such as SHA-1 and MD5, are too expensive. This paper proposes a much simpler hash function. The proposed hash function has two phases. To improve performance, implementations are likely to cache the output of the first phase.

2 Introduction

Before discussing the details of the temporal key hash function, it is useful to define the context in which this mechanism must work. The following requirements must be met:

· The encryptor and decryptor must share a 128-bit secret key. This key is called the temporal key (TK). The TK may be common among many parties. The management of this key is not discussed in this document.

· The encryptor and decryptor must use the RC4 stream cipher.

· Each party must ensure that no initialisation vector (IV) value is used more than once with each TK. We expect the IV to be implemented as a 16-bit counter, starting with zero. Implementations must ensure that the TK is updated before the full 16-bit IV space is exhausted.

The transmitter address (TA) is mixed into the TK to ensure that the various parties encrypting with the TK use different key streams. This property is important in all networks. Consider the simple case where a station communicates only with an access point (AP). Data sent by the station to the access point and data sent by the access point to the station will be encrypted with the same TK. The station and access point the will both begin their IV counters at zero. Thus, if the TA were not mixed with the TK, the same series of RC4 key streams used by both the station and the access point, enabling a data recovery attack.
By mixing the TA and the TK, a different RC4 key stream is used by each party. Traffic sent by a station to the access point will use a different RC4 key stream than traffic sent by the access point to the station. Traffic encrypted by one station using a default temporal key will use a different RC4 key stream than traffic encrypted by another station using the same default temporal key.
3 Temporal Key Hash Function

Other portions of the overall WEP security upgrade are defining the mechanisms to manage temporal keys. This paper specifies the two-phase processing of the temporal key to determine the per-packet encryption key. The first phase mixes the temporal key (TK) with the transmitter address (TA). The output of this phase will likely be cached; it can be reused to process subsequent packets associated with the same TK and the same TA. The second phase mixes the output of the first phase with the initialisation vector (IV). The IV must be different for each packet encrypted under the TK. The per-packet key (PPK) can be computed well before it is used. The two-phase process may be summarized as:

TTAK = Phase1 (TK, TA)

PPK = Phase2 (TTAK, IV)

Phase 1 is somewhat simpler than Phase 2. This simplicity is possible because the output of Phase 1 is not used directly as an RC4 key.

An S-box is used in both Phase 1 and Phase 2. The S-box substitutes one 16-bit value with another 16-bit value. This function is a non-linear substitution, and it is implemented as a table look up. Section 6 specifies the S-Box.
3.1 Phase 1

The inputs to the first phase of the temporal key hash function are the temporal key (TK) and the transmitter address (TA). The TK is 128 bits. The output, called TTAK, is 128 bits. All of these values are treated as arrays of 16-bit values: TA[0..2], TK[0..7], and TTAK[0..7]. The TA is sent within the packet header in the following (network) order: TA[0], TA[1], TA[2], where TA[0] and half of TA[1] contain the OUI.
The exclusive-or (() operation is used to obtain the index to the S-box.
The TTAK array values are computed as follows:

TTAK[7] = S[TK[7] (TA[1]]

TTAK[6] = S[TK[6] (TA[2] (TTAK[7]]

TTAK[5] = S[TK[5] (TA[0] (TTAK[6]]

TTAK[4] = S[TK[4] (TA[1] (TTAK[5]]

TTAK[3] = S[TK[3] (TA[2] (TTAK[4]]

TTAK[2] = S[TK[2] (TA[0] (TTAK[3]]

TTAK[1] = S[TK[1] (TA[1] (TTAK[2]]

TTAK[0] = S[TK[0] (TA[2] (TTAK[1]]
Since these computations involve only exclusive-or operations, by appropriate organization of the S-box lookup table, Phase 1 may be implemented in software with minimal performance impact due to the endian architecture of the underlying processor.
3.2 Phase 2

The inputs to the second phase of the temporal key hash function are the output of the first phase (TTAK) and the initialisation vector (IV). The TTAK is 128 bits. The IV is 16 bits. The output is a per-packet key, called RC4KEY, is 128 bits. RC4KEY has an internal structure to conform to the WEP specification. That is, the first 24 bits will be transmitted in plaintext. As such, they are used to convey the IV from the encryptor to the decryptor. The TTAK is treated as an array of 16-bit values: TTAK[0..7]. The RC4KEY is treated as an array of 8-bit values: RC4KEY[0..15]. The IV is treated as scalar 16-bit value.

Three functions are used. The first function, ROTATE_LEFT_1BIT, rotates the 16-bit input value one bit to the left. Thus, the most significant bit becomes the least significant bit. The second function, LO_8BITS, references the least significant 8 bits of the 16-bit input value. The third function, HI_8BITS, references the most significant 8 bits of the 16-bit value.

Four variables are employed: PPK, H0, H1, and TEMP. The PPK is 128 bits, and it is treated as an array of 16-bit values: PPK[0..7]. H0, H1, and TEMP are treated as scalar 16-bit values. A loop counter, called i, is also employed. As detailed below, the mapping from the 16-bit PPK values to the 8-bit RC4KEY values is explicitly little-endian to match the endian architecture of the most common processors used for this application. The rotate and addition operations in STEP2 makes Phase 2 particularly sensitive to the endian architecture of the processor, although the performance degradation due to running this algorithm on a big-endian processor should in be minor.
The second phase is comprised of three steps. The first step is a Feistel-like mixing function, employing an S-box. The second step performs additional mixing, employing rotate and addition operations. Finally, the third step assigns the 24-bit WEP IV value.

The PPK array values are computed as follows:

STEP1:

H0 = IV

H1 = 0x0000

FOR i = 0 to 7

BEGIN

H0 = H0 (TTAK[i]

TEMP = S[H0]

H0 = TEMP (H1

H1 = TEMP

PPK[i] = H0

END

STEP2:

TEMP = TTAK[0]

FOR i = 7 downto 1

BEGIN

TEMP = ROTATE_LEFT_1BIT[TEMP] + PPK[i]

RC4KEY[2*i] = LO_8BITS[TEMP]

RC4KEY[2*i+1] = HI_8BITS[TEMP]

END

STEP3:

RC4KEY[0] = 0xA5

RC4KEY[1] = HI_8BITS[IV]

RC4KEY[2] = LO_8BITS[IV]

4 Key Caching

The transmitter address (TA) is mixed into the temporal key (TK) in the first phase of the hash function. Implementations can achieve a significant performance improvement by caching the output of the first phase. Consider the simple case where a station communicates only with an access point (AP). The station will perform the first phase using its own address, and it will be used to encrypt traffic sent to the access point. The station will perform the first phase using the access point address, and it will be used to decrypt traffic received from the access point.

In some situations more than two parties use a particular TK, therefore implementations must be prepared to mix more than two TAs with the TK.
5 Initialization Vector Management

Each party must ensure that it does not encrypt more than one packet under a given temporal key (TK) with the same initialisation vector (IV) value. We expect the IV to be implemented as a 16-bit counter, starting with zero.

While the management of TKs is not within the scope of this document, implementations must ensure that the TK is updated before the full 16-bit IV space is exhausted. If a new TK cannot be obtained, then encrypted communications must cease. Reuse of an IV will result in the reuse of the associated RC4 key stream, enabling a data recovery attack.
The WEP IV format carries 3 octets. The first octet is a constant, and the second and third octets carry the 16-bit IV counter value. The first octet of the IV was selected by the authors to preclude the use of weak keys that begin with 0x00 or 0xFF. The authors selected a value with four zero bits and four one bits in a non-symmetric pattern.
6 S-Box

The same S-box is used in both Phase 1 and Phase 2. The S-box substitutes one 16-bit value with another 16-bit value. This function is a non-linear substitution, and it is implemented as a table look up. The table look up can be organized as either a single table with 65,536 entries and a 16-bit index (128 Kbytes of table) or two tables with 256 entries and an 8-bit index (1024 bytes for both tables). When the two smaller tables are used, the high-order byte is used to obtain 16-bit value from one table and the low-order byte is used to obtain a 16-bit value from the other table; the S-box output is the exclusive-or (() of the two 16-bit values.
The sample code in Annex A used the two smaller table approach. The S-box tables can be extracted from the reference implementation.
7 Test Vectors

The following output is provided to test implementations of this algorithm. All input and output values are shown in hexadecimal.
7.1 Test Vector 1
TK = 0100 0302 0504 0706 0908 0B0A 0D0C 0F0E

TA = 10 22 33 44 55 66

IV = 0000

TTAK = 3795 9045 3C8B 8318 DF8A 726F FDF7 8014

RC4KEY = A5 00 00 E4 F6 79 F3 93 E1 CC E9 E0 62 95 6C 47

7.2 Test Vector 2

TK = 3795 9045 3C8B 8318 DF8A 726F FDF7 8014

TA = E0 CC E9 E0 62 95

IV = 79F6

TTAK = 5814 BD07 0F5B 7915 E7FA F67C D700 C347

RC4KEY = A5 79 F6 D4 F9 3E FE 85 5F 72 39 C1 4C 83 7E 25

7.3 Test Vector 3

TK = 5814 BD07 0F5B 7915 E7FA F67C D700 C347

TA = 5C 72 39 C1 4C 83

IV = 3EF9

TTAK = AE95 F615 778F 618B 44DF C2C7 35A0 64E0

RC4KEY = A5 3E F9 64 C6 55 83 E1 1D EA 2B 44 F3 D2 12 93

7.4 Test Vector 4

TK = AE95 F615 778F 618B 44DF C2C7 35A0 64E0

TA = 1C EA 2B 44 F3 D2

IV = 55C6

TTAK = A2DB 102A 3EA3 5682 9956 C45D 7B11 FC54

RC4KEY = A5 55 C6 A5 04 2B 11 29 25 1E 22 F4 5A 25 C7 D6

7.5 Test Vector 5

TK = A2DB 102A 3EA3 5682 9956 C45D 7B11 FC54

TA = 24 1E 22 F4 5A 25

IV = 2B04

TTAK = 8DFC 8168 30F9 FB57 E943 A8F5 E3EB 2028

RC4KEY = A5 2B 04 56 28 93 6F 1F 1C 69 71 16 39 C4 95 31

7.6 Test Vector 6

TK = 8DFC 8168 30F9 FB57 E943 A8F5 E3EB 2028

TA = 1C 69 71 16 39 C4

IV = 9328

TTAK = 3008 3B04 FFA4 FDDC CBB1 DA5A 1C11 824C

RC4KEY = A5 93 28 4B F6 2D A7 6F 75 16 9D 3C B0 08 71 CF

7.7 Test Vector 7

TK = 3008 3B04 FFA4 FDDC CBB1 DA5A 1C11 824C

TA = 74 16 9D 3C B0 08

IV = 2DF6

TTAK = 1164 5B5E 7764 9926 A008 CB48 86C3 9505

RC4KEY = A5 2D F6 8D 14 5D 3E C5 1F E4 86 CC 89 53 6E EB

7.8 Test Vector 8

TK = 1164 5B5E 7764 9926 A008 CB48 86C3 9505

TA = 1C E4 86 CC 89 53

IV = 5D14

TTAK = 2D10 98B5 3FB9 7DC6 B6A1 8EFD D810 85A2

RC4KEY = A5 5D 14 61 3E 96 A1 19 2E 7F 52 24 7E 78 41 D3
Annex A – Reference Implementation

/***
 Generate proposed 802.11 temporal key per-packet hash test vectors

 Authors: Doug Whiting, Hifn; Doug Smith, Cisco

 This code is intended for public domain use, built solely out of the goodness

 of our hearts for the benefit of all mankind. As such, there are no

 warranties of any kind given on the correctness or usefulness of this code.

 This code is written for pedagogical purposes, NOT for performance.

**/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <assert.h>

#include <ctype.h>

#include <time.h>

typedef unsigned char byte; /* 8-bit byte */

typedef unsigned short u16b; /* 16-bit word */

#define DO_SANITY_CHECK 1

#define RotLeft_1(v16) ((((v16) << 1) | ((v16) >> 15)) & 0xFFFF)

#define Lo8(v16) ((v16) & 0xFF)

#define Hi8(v16) (((v16) >> 8) & 0xFF)

#define _S_(v16) (Sbox[0][Lo8(v16)] ^ Sbox[1][Hi8(v16)])

/* "global" variables */

static int verbose; /* enables additional output if set */

/* 2-byte by 2-byte subset of the full AES table */

const u16b Sbox[2][256]= /* Sbox for hash (can be in ROM) */

{ {

 0xC6A5,0xF884,0xEE99,0xF68D,0xFF0D,0xD6BD,0xDEB1,0x9154,

 0x6050,0x0203,0xCEA9,0x567D,0xE719,0xB562,0x4DE6,0xEC9A,

 0x8F45,0x1F9D,0x8940,0xFA87,0xEF15,0xB2EB,0x8EC9,0xFB0B,

 0x41EC,0xB367,0x5FFD,0x45EA,0x23BF,0x53F7,0xE496,0x9B5B,

 0x75C2,0xE11C,0x3DAE,0x4C6A,0x6C5A,0x7E41,0xF502,0x834F,

 0x685C,0x51F4,0xD134,0xF908,0xE293,0xAB73,0x6253,0x2A3F,

 0x080C,0x9552,0x4665,0x9D5E,0x3028,0x37A1,0x0A0F,0x2FB5,

 0x0E09,0x2436,0x1B9B,0xDF3D,0xCD26,0x4E69,0x7FCD,0xEA9F,

 0x121B,0x1D9E,0x5874,0x342E,0x362D,0xDCB2,0xB4EE,0x5BFB,

 0xA4F6,0x764D,0xB761,0x7DCE,0x527B,0xDD3E,0x5E71,0x1397,

 0xA6F5,0xB968,0x0000,0xC12C,0x4060,0xE31F,0x79C8,0xB6ED,

 0xD4BE,0x8D46,0x67D9,0x724B,0x94DE,0x98D4,0xB0E8,0x854A,

 0xBB6B,0xC52A,0x4FE5,0xED16,0x86C5,0x9AD7,0x6655,0x1194,

 0x8ACF,0xE910,0x0406,0xFE81,0xA0F0,0x7844,0x25BA,0x4BE3,

 0xA2F3,0x5DFE,0x80C0,0x058A,0x3FAD,0x21BC,0x7048,0xF104,

 0x63DF,0x77C1,0xAF75,0x4263,0x2030,0xE51A,0xFD0E,0xBF6D,

 0x814C,0x1814,0x2635,0xC32F,0xBEE1,0x35A2,0x88CC,0x2E39,

 0x9357,0x55F2,0xFC82,0x7A47,0xC8AC,0xBAE7,0x322B,0xE695,

 0xC0A0,0x1998,0x9ED1,0xA37F,0x4466,0x547E,0x3BAB,0x0B83,

 0x8CCA,0xC729,0x6BD3,0x283C,0xA779,0xBCE2,0x161D,0xAD76,

 0xDB3B,0x6456,0x744E,0x141E,0x92DB,0x0C0A,0x486C,0xB8E4,

 0x9F5D,0xBD6E,0x43EF,0xC4A6,0x39A8,0x31A4,0xD337,0xF28B,

 0xD532,0x8B43,0x6E59,0xDAB7,0x018C,0xB164,0x9CD2,0x49E0,

 0xD8B4,0xACFA,0xF307,0xCF25,0xCAAF,0xF48E,0x47E9,0x1018,

 0x6FD5,0xF088,0x4A6F,0x5C72,0x3824,0x57F1,0x73C7,0x9751,

 0xCB23,0xA17C,0xE89C,0x3E21,0x96DD,0x61DC,0x0D86,0x0F85,

 0xE090,0x7C42,0x71C4,0xCCAA,0x90D8,0x0605,0xF701,0x1C12,

 0xC2A3,0x6A5F,0xAEF9,0x69D0,0x1791,0x9958,0x3A27,0x27B9,

 0xD938,0xEB13,0x2BB3,0x2233,0xD2BB,0xA970,0x0789,0x33A7,

 0x2DB6,0x3C22,0x1592,0xC920,0x8749,0xAAFF,0x5078,0xA57A,

 0x038F,0x59F8,0x0980,0x1A17,0x65DA,0xD731,0x84C6,0xD0B8,

 0x82C3,0x29B0,0x5A77,0x1E11,0x7BCB,0xA8FC,0x6DD6,0x2C3A,

 },
 { /* second half of table is byte-reversed version of first! */

 0xA5C6,0x84F8,0x99EE,0x8DF6,0x0DFF,0xBDD6,0xB1DE,0x5491,

 0x5060,0x0302,0xA9CE,0x7D56,0x19E7,0x62B5,0xE64D,0x9AEC,

 0x458F,0x9D1F,0x4089,0x87FA,0x15EF,0xEBB2,0xC98E,0x0BFB,

 0xEC41,0x67B3,0xFD5F,0xEA45,0xBF23,0xF753,0x96E4,0x5B9B,

 0xC275,0x1CE1,0xAE3D,0x6A4C,0x5A6C,0x417E,0x02F5,0x4F83,

 0x5C68,0xF451,0x34D1,0x08F9,0x93E2,0x73AB,0x5362,0x3F2A,

 0x0C08,0x5295,0x6546,0x5E9D,0x2830,0xA137,0x0F0A,0xB52F,

 0x090E,0x3624,0x9B1B,0x3DDF,0x26CD,0x694E,0xCD7F,0x9FEA,

 0x1B12,0x9E1D,0x7458,0x2E34,0x2D36,0xB2DC,0xEEB4,0xFB5B,

 0xF6A4,0x4D76,0x61B7,0xCE7D,0x7B52,0x3EDD,0x715E,0x9713,

 0xF5A6,0x68B9,0x0000,0x2CC1,0x6040,0x1FE3,0xC879,0xEDB6,

 0xBED4,0x468D,0xD967,0x4B72,0xDE94,0xD498,0xE8B0,0x4A85,

 0x6BBB,0x2AC5,0xE54F,0x16ED,0xC586,0xD79A,0x5566,0x9411,

 0xCF8A,0x10E9,0x0604,0x81FE,0xF0A0,0x4478,0xBA25,0xE34B,

 0xF3A2,0xFE5D,0xC080,0x8A05,0xAD3F,0xBC21,0x4870,0x04F1,

 0xDF63,0xC177,0x75AF,0x6342,0x3020,0x1AE5,0x0EFD,0x6DBF,

 0x4C81,0x1418,0x3526,0x2FC3,0xE1BE,0xA235,0xCC88,0x392E,

 0x5793,0xF255,0x82FC,0x477A,0xACC8,0xE7BA,0x2B32,0x95E6,

 0xA0C0,0x9819,0xD19E,0x7FA3,0x6644,0x7E54,0xAB3B,0x830B,

 0xCA8C,0x29C7,0xD36B,0x3C28,0x79A7,0xE2BC,0x1D16,0x76AD,

 0x3BDB,0x5664,0x4E74,0x1E14,0xDB92,0x0A0C,0x6C48,0xE4B8,

 0x5D9F,0x6EBD,0xEF43,0xA6C4,0xA839,0xA431,0x37D3,0x8BF2,

 0x32D5,0x438B,0x596E,0xB7DA,0x8C01,0x64B1,0xD29C,0xE049,

 0xB4D8,0xFAAC,0x07F3,0x25CF,0xAFCA,0x8EF4,0xE947,0x1810,

 0xD56F,0x88F0,0x6F4A,0x725C,0x2438,0xF157,0xC773,0x5197,

 0x23CB,0x7CA1,0x9CE8,0x213E,0xDD96,0xDC61,0x860D,0x850F,

 0x90E0,0x427C,0xC471,0xAACC,0xD890,0x0506,0x01F7,0x121C,

 0xA3C2,0x5F6A,0xF9AE,0xD069,0x9117,0x5899,0x273A,0xB927,

 0x38D9,0x13EB,0xB32B,0x3322,0xBBD2,0x70A9,0x8907,0xA733,

 0xB62D,0x223C,0x9215,0x20C9,0x4987,0xFFAA,0x7850,0x7AA5,

 0x8F03,0xF859,0x8009,0x171A,0xDA65,0x31D7,0xC684,0xB8D0,

 0xC382,0xB029,0x775A,0x111E,0xCB7B,0xFCA8,0xD66D,0x3A2C,

 }

};

#if DO_SANITY_CHECK

/*

**

* Routine: SanityCheckTable -- verify Sbox properties

*

* Inputs: Sbox

* Output: None, but an assertion fails if the tables are wrong

* Notes:

* - The purpose of this routine is solely to illustrate and

* verify the properties of the Sbox table:

* + the Sbox is a "2x2" subset of the AES table:

* Sbox + affine transform + MDS.

* + the Sbox table can be easily designed to fit in 512

* with a byte swap

* - This routine does not nee

*

**

*/

void SanityCheckTable(void)

 {

 const static int M_x = 0x11B; /* AES irreducible polynomial */

 const static byte Sbox8[256] = { /* AES 8-bit Sbox */

 0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,

 0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,

 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,

 0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,

 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,

 0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,

 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,

 0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,

 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,

 0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,

 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,

 0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,

 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,

 0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,

 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,

 0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,

 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,

 0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,

 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,

 0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,

 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,

 0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,

 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,

 0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,

 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,

 0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,

 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,

 0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,

 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,

 0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,

 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,

 0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16 };

 int i,k,k2,k3;

 byte bitmap[0x2000];

 for (i=0;i<256;i++)

 {

 k = Sbox8[i];

 k2 = (k << 1) ^ ((k & 0x80) ? M_x : 0);

 k3 = k ^ k2;

 assert(Sbox[0][i] == ((k2 << 8) ^ k3));

 assert(Sbox[1][i] == ((k3 << 8) ^ k2));

 }

 /* now make sure that it's a 16-bit permutation */

 memset(bitmap,0,sizeof(bitmap));

 for (i=0;i<0x10000;i++)

 {

 k = _S_(i); /* do an S-box lookup: 16 --> 16 bits */

 assert(k < (1 << 16));

 assert((bitmap[k >> 3] & (1 << (k & 7))) == 0);

 bitmap[k >> 3] |= 1 << (k & 7);

 }

 for (i=0;i<sizeof(bitmap);i++)

 assert(bitmap[i] == 0xFF);

 /* if we reach here, the 16-bit Sbox is ok */

 printf("Table sanity check successful\n");

 }

#endif

/*

**

* Routine: Phase 1 -- generate TTAK, given TA, TK

*

* Inputs:

* TK = temporal key (changes infrequently) [128 bits]

* TA = transmitter's MAC address [48 bits]

* Output:

* TTAK = initialized according to inputs [128 bits]

*

**

*/

void Phase1(u16b *TTAK, const byte *TA, const u16b *TK)

 {

 int i;

 u16b TA_16[3];

 /* Convert Ethernet address bytes to 16-bit words */

 for (i=0;i<3;i++)

 TA_16[i] = TA[2*i] + (TA[2*i+1] << 8); /* little-endian */

 /* initialize TTAK */

 TTAK[7] = _S_(TK[7] ^ TA_16[1]);

 TTAK[6] = _S_(TK[6] ^ TA_16[2] ^ TTAK[7]);

 TTAK[5] = _S_(TK[5] ^ TA_16[0] ^ TTAK[6]);

 TTAK[4] = _S_(TK[4] ^ TA_16[1] ^ TTAK[5]);

 TTAK[3] = _S_(TK[3] ^ TA_16[2] ^ TTAK[4]);

 TTAK[2] = _S_(TK[2] ^ TA_16[0] ^ TTAK[3]);

 TTAK[1] = _S_(TK[1] ^ TA_16[1] ^ TTAK[2]);

 TTAK[0] = _S_(TK[0] ^ TA_16[2] ^ TTAK[1]);

 }

/*

**

* Routine: Phase 2 -- generate RC4KEY, given TTAK, IV

*

* Inputs:

* TTAK = per-transmitter key (Phase 1 output) [128 bits]

* IV = IV "counter" (changes per packet) [16 bits]

* Output:

* RC4KEY = the key used to encrypt the packet [128 bits]

*

* Notes:

* - The pair <TA,IV> must be unique across all packets using the same

* key TK value. Thus, the final RC4KEY value is unique across all

* packets with the same TK, so no RC4 key stream is ever re-used.

* - In order to avoid known FSM attacks, the algorithm below ensures

* that RC4KEY[0] != 0x00 or 0xFF
.

*

**

*/

void Phase2(byte *RC4KEY, u16b IV, const u16b *TTAK)

 {

 int i;

 u16b H0,H1,TEMP,PPK[8];

 if (verbose) printf(" Phase 2 intermediate results:\n");

 H0 = IV; /* inputs for the hash function */

 H1 = 0;

 for (i=0;i<8;i++) /* hash function: small Feistel-like cipher */

 {

 H0 ^= TTAK[i]; /* bring in 16-bits of key material */

 TEMP = _S_(H0); /* 16x16 permutation */

 H0 = TEMP ^ H1; /* set up for next round */

 H1 = TEMP;

 PPK[i] = H0;

 if (verbose) /* show intermediate results */

 printf(" PPK[%d]=H0=%04X. H1=%04X.\n",i,H0,H1);

 }

 /* do a final sweep in other direction, set secret portion of RC4KEY */

 TEMP = TTAK[0];

 for (i=7;i>0;i--)

 {

 TEMP = RotLeft_1(TEMP) + PPK[i];

 RC4KEY[2*i] = Lo8(TEMP); /* little-endian store */

 RC4KEY[2*i+1] = Hi8(TEMP);

 }

 /* set the "cleartext" portion of the RC4 key */

 RC4KEY[0] = 0xA5;

 RC4KEY[1] = Hi8(IV);

 RC4KEY[2] = Lo8(IV); /* overwrite RC4KEY[2] from final sweep */

 }

/***

 * Routine: doTestCase -- execute test case, and print results

 ***/

void DoTestCase(byte *RC4KEY, u16b *TTAK, u16b IV, const byte *TA, const u16b *TK)

 {

 int i;

 printf("--\n");

 printf("TK =");

 for (i=0;i< 8;i++) printf(" %04X",TK[i]);

 printf(". TA =");

 for (i=0;i< 6;i++) printf(" %02X",TA[i]);

 printf(". IV=%04X\n",IV);

 Phase1(TTAK,TA,TK);

 printf("TTAK =");

 for (i=0;i< 8;i++) printf(" %04X",TTAK[i]);

 printf("\n");

 Phase2(RC4KEY,IV,TTAK);

 printf("RC4KEY=");

 for (i=0;i<16;i++) printf("%02X ",RC4KEY[i]);

 printf("\n");

 }

/***

 * Static Test Cases

 ***/

#define NUM_TEST_CASES 8

void DoStaticTestCases(void)

 {

 int i,j;

 u16b IV,TK[8],TTAK[8];

 byte TA[6],RC4KEY[16];

 /* set a fixed starting point */

 IV = 0;

 for (i=0;i<8;i++) TK[i]=(2*i)+((2*i+1) << 8);

 for (i=0;i<6;i++) TA[i]=(i+1)*17;
 TA[0] = TA[0] & 0xFC; /* Clear I/G and U/L bits in OUI */
 /* now generate tests "recursively" */

 for (i=0; i<NUM_TEST_CASES; i++)

 {

 DoTestCase(RC4KEY,TTAK,IV,TA,TK);

 /* use results to seed the next test */

 for (j=0;j<8;j++) TK[j]=TTAK[j];

 for (j=0;j<6;j++) TA[j]=RC4KEY[8+j];
 TA[0] = TA[0] & 0xFC; /* Clear I/G and U/L bits in OUI */
 IV = RC4KEY[4] + 256*RC4KEY[5];

 }

 /* final output is a pretty good check of validity */

 }

/***

 * Random Test Cases

 ***/

void DoRandomTestCases(void)

 {

 int i,j;

 u16b IV,TK[8],TTAK[8];

 byte TA[6],RC4KEY[16];

 printf("Random tests:\n");

 /* now generate tests "recursively" */

 for (i=0; i<NUM_TEST_CASES; i++)

 {

 IV = rand() & 0xFFFF;

 for (j=0;j<8;j++) TK[j]=rand() & 0xFFFF;

 for (j=0;j<6;j++) TA[j]=rand() & 0xFF;
 TA[0] = TA[0] & 0xFC; /* Clear I/G and U/L bits in OUI */
 DoTestCase(RC4KEY,TTAK,IV,TA,TK);

 }

 }

/***

 * Usage text

 ***/

void Usage(void)

 {

 printf(

 "Usage: tkhash [options]\n"

 "Purpose: Generate test vectors for proposed 802.11 per-packet hash\n"

 "Options -? -- output this usage text\n"

 " -r -- random test vectors\n"

 " -sN -- init random seed to N\n"

 " -v -- enable verbose output\n"

);

 exit(0);

 }

/*

**

* Main

**

*/

int main(int argc, char **argv)

 {

 int i;

 char *parg;

 unsigned seed=(unsigned) time(NULL);

#if DO_SANITY_CHECK

 SanityCheckTable();

#endif

 for (i=1; i<argc; i++)

 {

 parg = argv[i];

 switch (toupper(parg[0]))

 {

 case '-':

 switch (toupper(parg[1]))

 {

 case '?':

 case 'H':

 Usage();

 return 0;

 case 'R':

 /* generate some random test vectors */

 DoRandomTestCases();

 return 0;

 case 'S':

 seed = atoi(parg+2);

 break;

 case 'V':

 verbose = 1;

 break;

 default:

 break;

 }

 default:

 break;

 }

 printf("Invalid argument: \"%s\"\n", parg);

 }

 srand(seed);

 /* generate some test vectors */

 DoStaticTestCases();

 return 0;

 }

Submission
page 12
Housley & Whiting

