
1

Introduction
This paper is the result of a study item within the IEEE 802 “Network Enhancements for the

Next Decade” Industry Connections Activity known as Nendica.

Scope

Study main factors in AI system which impact traffic.

Analyze the major challenges for AI computing network.

Investigate future technologies.

Identify potential standard work.

Purpose

Understand the requirement of AI computing network.

Look for potential standardization opportunity in IEEE802.

Abbreviation
RNN recurrent neural network

NLP natural language processing

DNN deep neural network

DP data parallelism

TP tensor parallelism

PP pipeline parallelism

EP expert parallelism

SP sequence parallelism

DCI data center interconnect

PFC priority-based flow control

RoCE RDMA over converged ethernet

CBD cyclic buffer dependency

JCT job completion time

Stepping into the Large-Scale AI era

ChatGPT ignites enthusiasm for large-scale AI models

In November 2022, OpenAI introduced ChatGPT, which quickly became the fastest-growing

consumer software application in history, attracting over 100 million users within just two

months. ChatGPT, short for Chat Generative Pre-trained Transformer, is built upon GPT-3.5.

With further refinement, ChatGPT demonstrates exceptional ability in facilitating

conversations, leveraging its advanced generative capabilities to produce nuanced content

and accurately comprehend the intricacies of language.

ChatGPT is a milestone in the evolution of generative AI. Traditionally, the development of

generative AI is hindered with the limitations of recurrent neural networks (RNNs), particularly

in handling long-range dependencies. It was the emergence of the "Transformer" architecture

2

in 2017, representing a paradigm shift, that enabled generative AI to achieve a significant leap

forward.

Through exponential growth in model parameters and innovative training methodologies,

ChatGPT exemplifies the potential of large-scale models in natural language processing (NLP),

a domain that has historically been dominated by small-scale models.

There’s no universally accepted definition to determine the threshold at which a model is

classified as “large-scale”. However, large-scale AI models always involve training models by

using trillions of datasets, complex architectures with billions of parameters. [16] points out

we have been in the Large-Scale Era since 2016.

Large-scale AI models show emergent abilities

The so-called ‘emergent abilities’ in the field of large-scale models refer to when a model

breaks through a certain scale, its performance significantly improves, showing amazing and

unexpected abilities. Generally speaking, models in the range of tens of billion to hundreds

of billion parameters may experience ability emergence.

As Google and Stanford said, emergent abilities that are not present in smaller-scale models

but are present in large-scale models, which are qualitative changes resulted by quantitative

changes. Few-shot prompted tasks by five language model families are analyzed in their

research. The result is that the model achieves random performance until a certain scale, after

which performance significantly increases to well-above random. [7]

This document is mainly dedicated to exploring the networking requirements and challenges

in the context of large-scale AI models.

Large-scale AI model Training

AI training process

The technology behind AI training is deep learning which uses DNN-based(Deep Neural

Network) architecture. A neural network consists of input layer, hidden layers and output layer.

Neurons are linked together in the network. The training includes several steps, as shown in

below figure. First, feeding the data into neural networks. Then, in forward propagation,

calculations with parameters are performed in each neuron, from the input layer to the output

layer through the neural network. After completing the calculations in the output layer, loss

function is used to calculate how far the output value is from the real value. The deviation

which can be understood as gradient then is used as a feedback signal to update parameters

in the backward propagation. This is one iteration. The training is run iteration by iteration

until the parameters that produce satisfied output are calculated.

3

AI large models have to be trained on vast amounts of data. Transformer architecture[9] is

the most popular architecture today for AI large model training. It is a set of neural networks

consisting of an encoder and a decoder with self-attention capabilities. Below analysis in this

document uses transformer architecture for demonstration.

Distributed AI system and parallelism

Training large-scale AI models is indeed a complex task, because it involves vast amounts of

data that demand advanced algorithms and significant computational resources.

A single AI accelerator struggles to handle the immense workload of training such models.

This is because large models, like those with billions of parameters, require a substantial

amount of memory and compute power that surpasses the capabilities of a single AI

accelerator. Take GPT-3 of 175B parameters as example. It requires about 2.8TB memory to

store the model and 430ZFLOPS to train it. A single Nvidia A100 [10] product which was

release in the same period as GPT-3 is 80GB. So 35 pieces of A100 are needed to store the

model. Considering from compute power perspective, A100 delivers 312 TFLOPS of

performance. As a result, it needs 43.8 years to train the model with one A100 or one day

with 16000 pieces of A100.

To address this, distributed AI system and parallel techniques are commonly deployed

in large-scale AI model training.

Collective communication is a cornerstone in distributed AI system. It is used to manage

and coordinate the exchange of information across the various AI accelerators involved in a

computational task. This often involves the synchronization of gradient updates during the

training across multiple AI accelerators. The efficiency of these collective communications is

paramount as they can significantly impact the speed and scalability of AI model training. [11]

shows the training time breakdown of several large models on TPUv4 which is Microsoft AI

accelerator product. Although those models have different types and different amounts of

data communication depending on the model architecture and how partitioning is performed,

they all spend a substantial percentage of the training time on data communication, that is

between 20% to 50%. When model size grow bigger, proportion of communication time in

training will increase if there is no further optimization.

Fundamental collective communication operations used in AI training include Allreduce,

Alltoall and Allgather. This will be shown in subsequent section “Parallel processing in

distributed AI system”.

4

◼ Allreduce:

Data from all members of a group is aggregated using a specified operation, such

as sum, maximum, or minimum, and then the result is distributed back to all

members of the group.

◼ Alltoall

Implementations of collective communication operations can vary based on the underlying

hardware and network topology, but the goal remains the same. That is to reduce

communication overhead and latency while ensuring accurate and timely data exchanging

Ring Allreduce and half doubling Allreduce are 2 implementations for Allreduce operation.

For ring allreduce, the 4 nodes form a ring. In each round, every node sends data to the next

node, and receives data from previous node. After 6 rounds, allreduce is done. This

implementation is simple, but may have latency issue when there are a lot of nodes, which is

unfriendly to small messages.

Half doubling reduces the communication times, meaning less rounds thus less time to finish

allreduce. But the nodes have to change its connect frequently. In round 1, node 1 talks with

node 2. In round 2, node talks with node 3. This changing introduces some cost.

5

Different implementations have their own pros and cons. In practice, it is difficult to use one

implementation to satisfy all cases. The decision needs to be made based on comprehensive

considerations such as the physical network topology, communication message size.

In another hand, parallel processing techniques are essential components in distributed

AI system, utilized to enhance performance and scalability. It mainly includes data parallelism,

tensor parallelism, pipeline parallelism, expert parallelism and sequence parallelism. They

correspond to orthogonal partitioning along the dimensions of batch size and hidden size,

and introduce collective communications in the system.

With DP (data parallelism), the training data is divided into multiple batches. Batches are

independent from each other. Each batch is processed on a separate accelerator

simultaneously. In this approach, each accelerator receives a portion of the data and

computes the gradients on its own before they are combined to update the model

parameters.

In the forward computation stage, each computing device uses its own data to calculate the

loss value. Since the data read by each computing device is different, the loss value obtained

on each computing device is often different. In backward computation stage, each computing

device calculates the gradient based on the loss value calculated forward, and uses the

AllReduce operation to calculate the average of the accumulated gradient, thereby ensuring

that the gradient value used to update parameters on each computing device is the same. In

the parameter update phase, the parameters are updated using the average gradient.

PP:

6

A model is divided into multiple stages and each stage is executed on a separate accelerator.

The output of each stage is passed on to the next stage by using send/recv operation.

Original PP only solves the memory problem of large model, but cannot accelerate training,

because it introduces point to point communication between accelerators, and during the

communication, accelerators are idle.

There are many solutions to optimize pipeline parallelism, such as Gpipe [8]. It splits minibatch

into microbatches, in order to reduce ‘bubble’ in the pipeline. Compared with original PP,

Gpipe increase accelerator utilization from 1/N to M/(N+M-1), where N is the number of

accelerator, M is the number of microbatch.

TP:

Tensor parallelism focuses on intra-layer parallelization within the model. For example, in

Transformer architecture, it uses matrix-matrix multiplication operation. The weight matrix is

split along one of its dimensions (usually row or column) and then assigned to multiple

accelerators for individual computation. Each accelerator is responsible for only a portion of

the entire matrix, and all accelerators synchronize through AllReduce operation to merge the

result.

EP

The principle of EP is to divide complex tasks into multiple sub-tasks and assign them to

specific "expert" for processing. It becomes popular in large model due to its scalability and

flexibility. In MOE(Mixture of Expert) architecture, it integrates multiple experts and a gate.

The gate is responsible for selecting the most suitable expert to deal with specific tasks based

on the input data features. Each expert may need to process a portion of all input data, and

their outputs need to be aggregated. This introduces Alltoall operations between devices

according to Gshard[13]. Alltoall operation consumes 31.18% time of MOE layer in

DeepSpeed-MOE system[12].

SP

7

Sequence parallelism is an approach that addresses the challenges of processing long

sequences of data. Self-attention mechanisms in transformer architecture are limited by

memory requirements relative to the sequence length, which restricts the processing of longer

sequences on AI accelerators. Sequence parallelism overcomes this by dividing the input

sequence into multiple segments and processing each segment on different AI accelerators.

5-dimension hybrid parallelism

In practice, a combination of parallelism techniques is often employed to harness the full

potential of distributed computing systems, maximizing resource utilization and expediting

training processes. Below figure shows an example of DP, PP, TP combination. In this scenario,

the AI cluster comprising 1024 accelerators employs these parallelism techniques. The

model's layers are partitioned across 8 accelerators via tensor parallelism. The entire model

undergoes division into 16 pipeline stages based on the sequential order of layers.

Concurrently, the dataset is segmented into 8 batches.

It's worth noting that the specific partitioning strategies employed may vary, depending on

various factors such as infrastructure capabilities and model architecture. These decisions

are implementation-dependent, tailored to optimize system performance and efficiency.

8

Communication characteristics in AI training

In distributed AI systems, AI training processes often exhibit unique traffic patterns,

characterized by uneven and sporadic data flows across spatial and temporal dimensions.

These patterns reflect the inherent complexity of AI algorithms, which require extensive data

processing capabilities. Despite the complexity, this traffic tends to follow a consistent

trajectory within the network. With prior knowledge and better understanding of how AI tasks

are distributed, these patterns become increasingly predictable.

Sparsity of traffic in space

The communication relationship between AI accelerators is not fully meshed, but rather

determined by the specific requirements of the AI job. Once AI job begins, the communication

relationship becomes fixed throughout the task's execution. This relationship is primarily

influenced by two key factors: the architecture of the model being trained and the partitioning

strategy employed. Each AI accelerator only communicates with a limited number of peer

points, calculated based on the model's partitioning. In a 5-dimension hybrid parallelism

model partitioning scenario, this count reaches its maximum as (number of TP - 1) + (number

of SP – 1) + (number of DP – 1) + 1 for each accelerator.

When training dense models such as GPT-3 with a trillion parameters using thousands of

accelerators, only a small fraction—ranging from 0.57% to 1.5%—of AI accelerator pairs

encounter communication traffic. While in the case of sparse models like GPT-4 with a

quadrillion parameters trained across tens of thousands accelerators, the proportion of

communication pairs experiencing traffic diminishes even further, ranging from just 0.024% to

0.86%.

Sparsity of traffic in time

Distributed AI systems leverage parallel strategies to accelerate AI tasks, with the

advancement of these tasks hinging upon effective communication between AI accelerators.

Various forms of parallelism employ distinct communication methods: tensor parallelism and

data parallelism utilize Allreduce communication, pipeline parallelism involves point-to-point

send/receive traffic, and sequence parallelism utilizes Allgather communication. Each form of

parallelism delineates a logical plane within the network. The communication between AI

accelerators shows sporadic behavior, resembling a square waveform, within each logical

plane. Notably, TP Allreduce occurs more frequently than PP send/receive, with PP

send/receive being more common than those of DP, as illustrated in the figure. Nonetheless,

despite these fluctuations, the network links remain mostly idle for extended durations. This

underscores the intermittent nature of communication demands in distributed AI systems.

Huge amount of traffic for communication

9

Despite the sparse pattern of communication observed in the AI training process, the overall

traffic amount remains substantial.

<<Editor notes: the number in the table is highly dependent on the model architecture,

parallel strategies: M=96, h=12288, L=96, b=1536，s=2048, T=8, P=8, D=16>>

Taking GPT-3 175B model as an example, the amount of traffic generated by various types

of communication in each iteration is listed in the following table. As shown by the table, TP

mainly involves Allreduce operations. During each iteration of training, Allreduce operation

are executed multiple times, depending on factors such as batch size, the number of neural

network layers, pipeline lanes and parallel data streams. The amount of data to be

communicated by the accelerator each time is determined by tensor lanes, batch size, hidden

layer dimensions etc. Therefore, the total traffic amount communicated in each iteration for

TP is the product of the number of communications and the data amount exchanged during

each communication. That is hundreds of gigabytes.

 Typical operation Total traffic amount

Tensor Parallelism (TP) Allreduce 100s GB

Pipeline Parallelism (PP) Send/receive 100s MB~10s GB

Data Parallelism (DP) Allreduce GB

Expert Parallelism (EP) Alltoall 10s GB

While the absolute amount of communication traffic may differ based on factors such as

model architecture and partitioning strategy, it invariably increases with the scale of the AI

model. As AI models grow larger in parameter size and dataset, the demands on network

bandwidth for communication likewise increase.

AI computing networks
To train a large model, high compute power system is needed. The total compute of

distributed AI system is decided by single accelerator compute, scale, efficiency and

availability of the system, as shown below.

Total compute of distributed AI system = single AI accelerator compute * Scale * Efficiency *

Availability

◼ Scale: number of AI accelerators

◼ Efficiency: percentage of theoretical peak FLOPS

◼ Availability: percentage of system working time

The latter 3 factors, scale, efficiency and availability are relative to AI computing networks. AI

computing networks interconnect the distributed system of hardware devices and software

components that collectively perform AI computational tasks. It is used to exchange model

parameters, gradients, activation values, and other data necessary for synchronization and

optimization during the training process. It also carries traffic of service scheduling,

management and accessing storage system.

To achieve high total compute power of AI system, AICN should be scalable, minimize

communication overhead and be resilient.

10

Requirements and Challenges of AI computing

Networks

Scale

In the last 4 years, industry giants and startups have accelerated AI large models

development, such as GPT from OpenAI, LLaMA from Meta and Gemini/Gemma from

Google.

The evolvement of models follows the LLM scaling law, increasing the size of model to get

better and better performance. Take GPT series as example. GPT3 is 175B parameters with

300B tokens. When it comes to GPT4 2 years later, parameter size grows to 1.8T with 13T

tokens. GPT5 is not released yet, but It is stated to be much more powerful than GPT4 by

OpenAI. The parameter size is estimated to be close to 10T with 30T tokens.

The larger the model is, the more computing power is required to train the model. Roughly,

F=6PD. F is computing power, P is parameter size, and D is token number. [1] So,

compared with the model 4 years ago, the computing power needs increases 10000 times.

Although the accelerators used for AI training are also constantly evolving, like Nvidia’s

latest GPU B200 which reaches 2.5PFLOPS[5], almost 8 times that of its previous product

A100, the speed of evolvement is lag behind the growth of required computing power. So it

is seen that the scale of AI cluster increases from thousands of accelerators to tens of

thousands accelerators, even to hundreds of thousands accelerators[2].

<<Editor notes: delete the figure>>

Below figure depicts the development of model size, cluster scale, and its relationship. The

x-axis is the year of development. The y-axis on the left is parameter size of AI models. The

y-axis on the right is the number of accelerators in AI cluster. To train GPT-3 within 10 days,

it needs about 2000 accelerators 4 years ago. Now, the mainstream large-scale AI cluster is

built with tens of thousands accelerators. In future, it is expected to use hundreds of

thousands accelerators to train larger models, such as GPT-6.

11

With the scale of AI cluster growing bigger and bigger, power consumption and network

cost become challenges.

1) Distributed AI training across locations to address growing power consumption

The power requirements for large-scale AI clusters are substantial due to the

significant computational resources(mainly accelerators) needed. A report by Schneider

Electric points out the introduction of new GPU generations has led to a significant increase

in power consumption, despite yielding higher productivity gains. An AI cluster with 22,500

H100 GPUs demands 40,000 kW of power[3]. In the typical public cloud deployment,

illustrated in the figure below, it comprises regions, available zones (AZs), and data centers

(DCs). AZs are distinct, physically separate locations within a cloud region, each functioning

as a logical data center supported by one or more physical data centers. Each AZ is

equipped with its own power system, networking infrastructure, and connectivity. AZs within

a region are interconnected in order to enhance the resilience, fault tolerance, and reliability

of cloud-based applications and services by providing redundancy and isolation. However,

the deployment of large-scale AI cluster within an AZ is restrained by the power supply of

the location. As AI clusters continue to expand in size and scope, it becomes increasingly

challenging to identify locations with the required power capacity. Microsoft has already

met the problem. Microsoft engineer complains that they cannot put more than 100K

H100s in a single state without bring down the power grid. [2]

It has to do AI training across different datacenters/AZs. Therefore, long distance DCI

transmission is involved. When training operations are confined to a single location, traffic

management within the AI cluster is relatively straightforward. A dedicated network with

large bandwidth is established to transmit the necessary data for synchronization and

optimization during the training process. Typically, the network topology used is regular,

12

such as a Fattree, which is non-blocking. However, when training tasks span multiple

locations, the situation becomes significantly more complex.

Firstly, it turns to be over-subscribed network with an oversubscription ratio potentially

reaching 1:10. The DCI bandwidth is considerably smaller compared to the dedicated

network used for intra-location training, thus making DCI the primary bandwidth

bottleneck. The limited DCI bandwidth can severely restrict the efficiency of data

synchronization and optimization processes, which are critical for effective AI training. And

the oversubscription ratios can lead to congestion, increased latency, and reduced overall

performance of the training network.

Secondly, the distance of DCI links is significantly extended, often spanning tens to

hundreds of kilometers depending on the geographical locations of the data centers. This

increased distance introduces additional latency, which complicates both congestion control

and flow control mechanisms. Current congestion control protocols react more slowly under

these conditions due to the longer time required to detect congestion and take appropriate

reaction. Additionally, the current use of PFC for lossless transmission places a lot of

pressure on data center switch buffers.

Furthermore, AI traffic cross DCs/AZs is mixed with other application traffic. The burst of AI

huge traffic can easily conflict with other applications’ traffic, causing network congestion.

In summary, the challenges for distributed AI training across locations mainly include

the limited bandwidth of DCI and unpredictable transmission on long-distance links.

2) Optimized network topology to address growing network cost

Another challenge is the network cost of AI cluster. Fat-tree topology, while popular in

traditional datacenter network encounters cost issues when scaled up for large AI clusters.

Fat-tree is good for diverse traffic pattern. Its structured approach considers the worst case

patterns. But that is not efficient for AI traffic which is predictable. As network scale grows,

the hierarchical nature of fat-tree requires a significant number of switches and extensive

cabling, leading to increased hardware expenses. According to HOTI 2023 keynote speech

by Nvidia[4], network cost per node(<5k endpoints) in fat-tree topology is about 2 times of

cost per node in dragonfly topology. Moreover, the complexity of managing such a vast

network adds to operational costs, as adding or removing nodes affects the overall

topology and may require significant reconfiguration.

This has led the industry to explore optimized topologies in order to have a more cost-

effective model for AI cluster. Such works include direct topologies and optical

interconnects. Dragonfly/Dragonfly+ and Torus are typical direct topologies. They are

scalable and flexible, requiring fewer switches than the traditional fat-tree topologies.

Optical interconnects provide higher bandwidth, lower latency, and improved energy

efficiency compared to traditional electrical interconnects. Some examples are 3D torus and

optical spine switches used by google[6], and Nvidia proposed Dragonfly+ that uses OCS

(optical path switching) to provide interconnect between groups[4].

But those optimized topologies have their own challenges when deployed for Ethernet/IP

13

traffic. There are multiple redundant paths between nodes in the new topologies. Unlike the

FatTree topology, where paths follow a consistent pattern and have uniform lengths, the

paths in these optimized topologies can vary in length and routing behavior. Take Dragonfly

topology for example. In a dragonfly network, nodes are organized into groups, and each

group is connected to a set of switches. As illustrated in the figure below, the red path

represents the preferred shortest path between two nodes. Once the shortest path becomes

congested, adaptive routing is executed, shifting the traffic to alternative paths such as the

blue path. The blue path provides a viable alternative route to ensure continued

connectivity under congested conditions, but it is longer and has different routing behavior.

Such irregularity of paths increases risk of deadlock causing by link-level flow control. PFC is

a typical link-level flow control mechanism used to ensure zero packet loss, thereby

increasing network performance. It is widely deployed today and is proven to be an

effective method to support RoCEv2. Despite ongoing research into using best-effort

networks by improving transport technologies, link-level flow control remains an important

technology included in different solutions for AI training. Some solutions employ credit-

based flow control at the link level, such as InfiniBand. While credit-based flow control

differs from PFC in terms of buffer requirements, it shares the same deadlock issues

inherent to PFC.

Deadlock issue is caused by CBD(cyclic buffer dependency), as shown in the figure. Flow 1, 2

and 3 use the same priority queue. The paths of the 3 flows overlap. Once any one of

switches A, B, and C starts PFC due to congestion, PFC deadlock may occur.

In a fat-tree topology, equal-cost paths are utilized, which prevents cyclic buffer

dependency (CBD) under normal conditions. However, when a link failure occurs, traffic

rerouting can cause CBD. As illustrated in the figure below, normal traffic follows an upward

and then downward path, as shown by the red and blue arrows. When the links between

devices 21 and 12, and devices 24 and 11 fail, traffic must be rerouted. The rerouted paths

for the purple and green traffic flows result in a downward and then upward pattern (e.g.,

14

12→22→11 and 11→23→12). This rerouting introduces CBD between devices 11, 12, 22,

and 23. Specifically, devices 22 and 23 are critical points where the traffic path direction

changes. By adjusting the priority queues for traffic at these points, the CBD can be

resolved, thus avoiding deadlock.

The primary strategy for preventing PFC deadlock in a fat-tree topology is to identify the

points where traffic path direction changes. This is where topology recognition function in

IEEE 802.1Qcz becomes useful. This function helps to determine the traffic path direction

within a fat-tree topology by identifying the levels of devices and the orientation of their

ports, as shown in below figure. When traffic moves from an uplink port to another uplink

port on a device, this point is recognized as where the priority queue of traffic should be

changed to break CBD.

However, the topology recognition is not applicable to the optimized topologies. One

reason is direct topologies do not have hierarchical layers present in fat-tree topology.

Additionally, optical interconnects may be reconfigured on demand to accommodate

changing traffic patterns, which alters the topology dynamically. Furthermore, traffic re-

routing is no longer an indicator of CBD in these environments. In optimized topologies,

traffic paths are irregular (not the equal-cost path anymore), and adaptive routing adds

complexity to the network. Developing a method adaptive to different topologies is critical

to solve PFC deadlock issue.

Efficiency

The total computing power of an AI system cannot scale linearly with the addition of more

accelerators due to the increased need for data communication between AI accelerators

during the training process, which introduces significant communication overhead. [17]

provides a breakdown of the training time for several large models on Google's TPUv4.

Despite variations in model types and the amount of data communication based on model

15

architecture and partitioning strategies, all models analyzed spend a substantial portion of

their training time on data communication, ranging from 20% to 40%. As AI models continue

to grow in complexity and size, this proportion of communication time is expected to increase,

unless further optimizations are implemented.

Shortening communication time is critical to improve AI system performance. Besides

evolving physical link speed that IEEE802.3 is working on, traffic management is the key which

reduces communication contention in order to optimize network bandwidth utilization and

improve communication efficiency.

Communication contention can be caused by various factors. One major reason is improper

traffic distribution on network paths, making load balancing extremely important. However,

considering the communication characteristics of AI training, traditional load balancing

mechanisms face challenges.

Additionally, flow control and congestion control cannot be ignored, as there can still be

traffic conflicts due to hardware limitations or imperfect load balancing.

1) Load balancing

Modern datacenter networks generally provide multiple forwarding paths for each end

pairs. Load balancing (LB) is a kind of technologies aiming at fully utilizing these redundant

paths. LB can effectively relief the congestion hotpot intra network and network fault, raising

the overall throughput by distributing flows or packets among multiple paths.

The most conventional LB algorithm ECMP

The effectiveness of a LB scheme is tightly related to the network traffic pattern. As analyzed

in the former chapter, the AI traffic is mainly composed of a small number of large

bandwidth flows. It’s hard for the most conventional LB algorithm ECMP to evenly distribute

few elephant flows restricting by its flow-based granularity.

It is almost coming into a consensus that AI network need a more fine-grained load

balancing scheme to service these elephant flows. Per-packet LB solution is widely

considered as the technology trend to avoid per-flow LB’s drawbacks for AI network.

The work of [14] conduct a simple experiment to verify that per-packet LB performs better

on Job completion time (JCT) than per-flow.

Experiment settings: The topology is the classic two-layer clos network. There are 4 servers.

Each server has 8 GPUs and 8 NICs. Running 8 jobs that is between A1 and D1, A2 and

D2, … A8 and D8 respectively.

16

Results: Figure shows the JCT of per-flow and per-packet LB under different message size.

The per-packet LB achieve shorter JCT obviously with the message size increasing. When

the message size is 512 MB, JCT of per-packet LB is about one-third of flow-based LB.

The fine-grained per-packet LB achieve better load balancing effectiveness, but resulting in

packets of a flow arriving at receiver out of order. The change from network in-order to

out-of-order delivery makes troubles, which mainly in three aspects.

a) Re-ordering: End-side device or NIC may need to re-order out-of-order packets, which

causes severe scalability challenges especially for hardware-based protocol like RDMA.

b) Packet loss can’t be detected fast: The receiver can’t quickly distinguish packet loss or

delay based on packet sequence number, that lowering the efficiency of packet loss

recovery. In flow-based LB scenario, packets are expected to arrive in order and the loss

recovery protocol of RNIC (Go-back-N or selective repeat protocol) interprets an out-

of-order packet as an indication of packet loss, which can quickly activate

retransmission when loss happen [15]. If network enable packet spraying, out-of-order

packets are normal, hence RNIC can only rely on the timeout mechanism to detect

packet loss that is obviously inefficient. That means the performance penalty of packet

loss in per-packet LB network may be more than per-flow LB network.

There is an experiment to evaluate the effect of packet loss toward in-order receiving

and out-of-order receiving.

⚫ Experiment Settings: Two Severs equipped with Nvidia BlueField3 DPUs are

connected by a network emulator. Packet loss rate is set to 0.5%, and the flow size is

set to 32MB. Testing flow completion time (FCT) under AR (adaptive routing)

17

condition and non-AR condition (including GBN and SR protocols).

⚫ Results: Figure shows the cumulative probability distribution of FCT under four

conditions. When enable AR, RNIC receive packets out of order, and is more

sensitive to packet loss. When packet loss occurs, the FCT is longer.

c) Packet loss can’t be located under silent network faults: Silent network faults is a kind of

network device faults that can’t detected by device itself and don’t generate any alarm

information. This kind of faults may be caused by chip soft failure, forwarding table

entry failure and so on. The silent failures can cause silent packet loss that do significant

damage to performance. People usually adopt In-band flow measurement technologies

(e.g., IOAM, IFIT) to accurately locate silent packet loss of a flow under the condition

that a flow is only forwarded by one path. The basic idea is illustrated in the below

figure. Each device count per-flow in certain method. As the forwarding path is

determined, the packet loss can be located by comparting the flow count of each device

of this path.

Under packet spraying, packets of a flow may randomly be forwarded by all available

paths. It’s hard to locate the silent packet loss using the existing in-band flow

measurement as having no knowledge about how is one flow forwarded among

multiple paths.

18

2) Flow control and congestion control

Load balancing is a strategy to manage data path at the flow level or packet level, while

flow control and congestion control manage the rate of data transmission. Congestion

control detects network congestion and notifies relevant nodes to adjust their flow

control strategies. Flow control specifically regulates the transmission rate between two

nodes using mechanisms such as queue/priority management, rate control, credit-

based mechanisms, and sliding window mechanisms.

In an AI cluster, the goal is to optimize the overall utilization of AI accelerator. When

designing flow control/congestion control to address traffic conflicts in an AI cluster, the

goal must be a primary consideration.

For a single AI training job, it faces ‘co-flow’ issue. In the training process, each iteration

contains multiple concurrent flows which are interrelated. All nodes involved in the

training must wait for each other to complete their data transmissions before

proceeding to the next iteration. Delays in any single flow can stall the entire training

process, leading to a significant waste of accelerator resources. Flow control/congestion

control aims to reduce tail latency, thereby reducing JCT (job completion time).

However, addressing flow control for a single job isn't sufficient. In AI cluster, it usually

supports many jobs. According to [19], in their in-production AI cluster, the number of

concurrent jobs could exceed 30, occupying 1,000+ GPUs. 36.3% jobs suffer from the

inter-job communication contention, and such contention leads to degradation in both

GPU utilization and training throughput. Unlike the key in single job which is JCT,

optimizing JCT in multi job training may lead to reduced GPU utilization. [19] also

explains the issue with a 2-job example. Therefore, flow control/congestion control in AI

cluster must distinguish between different flows and apply different strategies to

coordinate all the flows and mitigate these challenges.

Availability

Components in large scale system frequently fail.

✓ Fast Failure recovery

AI fabric’s requirement on failure recovery

Future technologies

Standard considerations

19

References
[1] Computing power and Model size calculation: https://zhuanlan.zhihu.com/p/688178908

[2] GPT-6 training: https://digialps.com/gpt-6-already-leak-claims-openai-plans-to-use-

100k-gpus-at-once-for-its-training-can-short-circuit-grid-operations/

[3] Energy consumption for AI workloads:

https://www.powerelectronicsnews.com/schneider-electric-predicts-substantial-energy-

consumption-for-ai-workloads-globally/

[4] HOTI 2023 keynote speech by Nvidia: https://www.youtube.com/watch?v=napEsaJ5hMU

[5] Nvidia GPU B200: https://www.theregister.com/2024/03/18/nvidia_turns_up_the_ai/

[6] Norman P. Jouppi et al. “TPU v4: An Optically Reconfigurable Supercomputer for

Machine Learning with Hardware Support for Embeddings”

[7] Jason Wei et al. “Emergent Abilities of Large Language Models” Transactions on

Machine Learning Research (2022)

[8] Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline

parallelism." Advances in neural information processing systems 32 (2019).

[9] Transformer(deep learning architecture) :

https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)

[10] Nvidia A100: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-

Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

[11] Shibo Wang et al. “Overlap Communication with Dependent Computation via

Decomposition in Large Deep Learning Models” ASPLOS (2023)

[12] Xiaonan Nie et al. “HetuMoE: An Efficient Trillion-scale Mixture-of-Expert Distributed

Training System”

[13] Dmitry Lepikhin et al. “GShard: Scaling Giant Models with Conditional Computation and

Automatic Sharding”

[14] 1-24-0004-05-ICne-load-balancing-challenges-in-ai-fabric.

[15] Song C H, Khooi X Z, Joshi R, et al. Network Load Balancing with In-network Reordering

Support for RDMA[C]//Proceedings of the ACM SIGCOMM 2023 Conference. 2023: 816-831.

[16] Jaime Sevilla et al. “Compute Trends Across Three Eras of Machine Learning”

[17] Shibo Wang et al. “Overlap Communication with Dependent Computation via

Decomposition in Large Deep Learning Models”

[18] IEEE 802 Nendica Report: Intelligent Lossless Data Center Networks

https://ieeexplore.ieee.org/document/9457238

[19] Jiamin Cao et al. “Crux: GPU-Efficient Communication Scheduling for Deep

Learning Training”

[20] Kun Qian et al. “Alibaba HPN: A Data Center Network for Large Language Model

Training”

https://zhuanlan.zhihu.com/p/688178908
https://digialps.com/gpt-6-already-leak-claims-openai-plans-to-use-100k-gpus-at-once-for-its-training-can-short-circuit-grid-operations/
https://digialps.com/gpt-6-already-leak-claims-openai-plans-to-use-100k-gpus-at-once-for-its-training-can-short-circuit-grid-operations/
https://www.powerelectronicsnews.com/schneider-electric-predicts-substantial-energy-consumption-for-ai-workloads-globally/
https://www.powerelectronicsnews.com/schneider-electric-predicts-substantial-energy-consumption-for-ai-workloads-globally/
https://www.youtube.com/watch?v=napEsaJ5hMU
https://www.theregister.com/2024/03/18/nvidia_turns_up_the_ai/
https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://ieeexplore.ieee.org/document/9457238

