2

Technical Descriptions for
Cut-Through Forwarding in Bridges

DCN 1-22-0042-12-1Cne

Author: Johannes Specht

November 14, 2022

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Technical Descriptions for Cut-Through Forwarding in Bridges

Contents
I. Introduction 8
1. Purpose 9
2. Relationship to IEEE Standards 10
3. Status of this Document 11
Il. Cut-Through Forwarding in Bridges 12
4. Overview and Architecture 13
5. Modeling Principles 15
5.1. Frame Types o 15
5.2. Modeling of Service Primitives, 15
5.3. Parameter-based Modeling Lo 16
5.4. Temporal Control 17
5.4.1. Processing Stalls 17
5.4.2. Lateerrors 17
5.4.3. Fall-backs to S&F oo 17
5.4.4. Instantaneous Operations 18
6. Generalized Serial Convergence Operations 19
6.1. Overview 19
6.2. Service Primitives 21
6.2.1. M_DATA.indication and M_DATA request 21
6.2.1.1. DA . . . 21
6.2.1.2. SA . . . 21
6.2.1.3. MSDU 21
6.2.1.4. FCSo 21
6.2.2. M_UNITDATA indication and M_UNITDATA request 21
6.3. Global Constants 22
6.3.1. PREAMBLE 22
6.3.2. LEN_OCT oo, 22
6.3.3. LEN_ADDRo 22
6.34. LEN_FCS . . .o 23
6.3.5. LEN_MIN 23
Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 2

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

75

76

77

78

79

80

Technical Descriptions for Cut-Through Forwarding in Bridges

6.4.

6.5.

6.6.

6.7.

6.8.
6.9.

6.10.

6.3.6. LEN_ MAX e 23
6.3.7. LEN_DATA 23
Global Variables L 23
6.4.1. RxBitEnable 23
6.4.2. RxBit 23
6.4.3. RxBitStatus. 24
6.4.4. RxDataEnable, 24
6.4.5. RxData e 24
6.4.6. RxDataStatus. 25
6.4.7. TxBitEnable 25
6.4.8. TxBit 25
6.4.9. TxBitStatus 25
6.4.10. TxDataEnable, 25
6.4.11. TxData o e 25
6.4.12. TxDataStatus 25
Global Functions 26
6.5.1. append(bitArraybit) 26
6.5.2. insert(bitArray,index,bit)o 26
6.5.3. remove(bitArrayindex) Lo L 26
Generic Data Receive process 26
6.6.1. Description Lo 26
6.6.2. State Machine Diagram 26
6.6.3. Variables 26

6.6.3.1. cnt 26

6.6.3.2. buf 26

6.6.3.3. rxDataEnd 26
Generic Frame Receive process 28
6.7.1. Description e 28
6.7.2. State Machine Diagram 28
6.7.3. Variables 28

6.7.3.1. cnt 28

6.7.3.2. len. 28

6.7.3.3. buf 28

6.7.3.4. status Lo 28
6.7.4. Functions e 28

6.7.4.1. FCSValid(FCS) 28
Receive Convergence process o v oo e 30
Generic Data Transmit process oL 30
6.9.1. State Machine Diagram 30
6.9.2. Variables e 30

6.9.2.1. cData 30
Generic Frame Transmit process 30
6.10.1. Description L Lo 30
6.10.2. State Machine Diagram 30

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 3

81

82

83

84

85

86

87

88

89

20

91

92

93

94

95

926

97

98

Technical Descriptions for Cut-Through Forwarding in Bridges

6.10.3. Variables L. e 33
6.10.3.1. cnt 33
6.11. Transmit Convergence process« v v v v v v v v 33
7. Bridge Port Transmit and Receive Operations 34
71 OVerview oo i i e e 34
7.2. Bridge Port Connectivity 35
7.3. Priority Signaling L 35
7.3.1. Receive path operations 35
7.3.2. Transmit path operations 36

7.4. Translations between Internal Sublayer Service (ISS) and Enhanced In-
ternal Sublayer Service (EISS) 36
7.4.1. Receive path operations 36
7.4.2. Transmit path operations, 37
7.5. Higher Layer Compatibility 37
7.6. CTF Sublayer 37
7.6.1. Receive Path Operations. 37
7.6.2. Transmit Path Operations 38
7.6.3. Inconsistent frame handling 38
8. Bridge Relay Operations 39
81. Overview 39
8.2. Passive Stream Identification 0oL 41
8.3. Sequence Decode 41
8.4. Active Topology Enforcement 42
8.4.1. Overview 42
84.2. Learning. 42
8.4.3. [Initial set of potential transmission Ports 42
8.5. Ingress Filteringo 42
8.6. Frame Filtering 43
8.7. Egress Filtering e 43
8.8. Flow Classification and Metering 43
88.1. General 43
8.8.2. Stream Filtering oL oo 44
8.8.3. Maximum SDU size filtering 44
8.8.4. Stream Gating 45
8.8.5. Flow Metering 45
8.9. Individual Recovery 45
8.10. Sequence Recoveryo 46
8.11.Sequence Encode 46
8.12. Queuing Frames o 46
8.13. Queue Management 46
8.14. Transmission Selection L oL o 47
Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 4

134

137

154

Technical Descriptions for Cut-Through Forwarding in Bridges

9. Management Parameters 48
9.1. OVerview Lo e e e 48
9.2. Control Parameters o 48

9.2.1. CTFTransmissionSupported 48
9.2.2. CTFTransmissionEnable 48
9.2.3. CTFReceptionSupported 49
9.2.4. CTFReceptionEnable 49
9.3. Timing Parameters oo oL 49
9.3.1. CTFDelayMin and CTFDelayMax 49
9.4. Error Counters 49
9.4.1. CTFReceptionDiscoveredErrors 49
9.4.2. CTFReceptionUndiscoveredErrors 50

I1l. Cut-Through Forwarding in Bridged Networks 51

IV. Appendices 53

A. Interaction of the Lower Layer Interface (LLI) with existing Lower Layers 54
A.1. PLS Service Interface 54

AL Overview oo i e 54
A.1.2. Service Primitives oo 54
A.1.3. Global Variables and Constants 55
A1.3.1. BitTick 59
A132. LEN FRAMEGAP 55

A.1.4. Global Constraints o 55
A.1.5. Transmit Bit Clock process 55
A.1.6. PLS Transmit process v v v v v v v 95
A.1.6.1. Description 55
A.1.6.2. State Machine Diagram 55
A.1.6.3. Variables 57

A.1.7. PLS Receive process o oo i e 57
A.1.7.1. Descriptiono o 57
A.1.7.2. State Machine Diagram 57
A.1.7.3. Variableso 57

A.1.8. Support for Preemption oL 57
Bibliography 57

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 5

1

o

5

156

158

159

160

161

162

163

Technical Descriptions for Cut-Through Forwarding in Bridges

List of Figures

4.1. Architecture of a Cut-Through Forwarding (CTF) Bridge. 13
6.1. Overview of the generalized serial convergence operations. 19
6.2. State Machine Diagram of the Generic Data Receive process. 27
6.3. State Machine Diagram of the Generic Frame Receive process. 29
6.4. State Machine Diagram of the Generic Data Transmit process. 31
6.5. State Machine Diagram of the Generic Frame Transmit process. 32
7.1. Bridge Port Transmit and Receive (VLAN-unaware). 34
7.2. Bridge Port Transmit and Receive (VLAN-aware). 35
8.1. Forwarding process of a CTF bridge. 40
8.2. Flow classification and metering. 44
A.1. Processes and interactions for interfacing between LLI and PLS service
primitives. 54
A.2. State machine diagram of the PLS Transmit process. 56
A.3. State machine diagram of the PLS Receive process. 58
Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 6

Technical Descriptions for Cut-Through Forwarding in Bridges

. List of Algorithms

171 6.1. Signature of the M DATA indication service primitive. 21
172 6.2. Signature of the M_DATA request service primitive. 21
173 6.3. Signature of the M_UNITDATA. indication service primitive. 22
174 6.4. Signature of the M_UNITDATA request service primitive. 22
175 6.5. Definition of data type low_data_t. 24
176 8.1. Queuing rules for frames under reception. 47

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 7

Technical Descriptions for Cut-Through Forwarding in Bridges

Part I.

Introduction

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne

Technical Descriptions for Cut-Through Forwarding in Bridges

1. Purpose

Purpose of this document is to provide input for technical discussion in pre-PAR activ-
ities of IEEE 802, the IEEE 802 Network Enhancements for the Next Decade Industry
Connections Activity (Nendica) in particular. The contents of this document are tech-
nical descriptions for the operations of Cut-Through Forwarding (CTF) in bridges.
The intent is to provide more technical clarity, demonstrate technical feasibility, and
thereby satisfy the request expressed by individuals during the IEEE 802.1 closing
plenary meeting in July 2022.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 9

187

188

190

191

192

193

194

Technical Descriptions for Cut-Through Forwarding in Bridges

2. Relationship to IEEE Standards

This document IS NOT an IEEE Standard or an IEEE Standards draft, it is an
individual contribution by the author containing technical descriptions. This allows
readers to focus on the technical contents in this document, rather than additional
aspects that are important during standards development. For example:

1. The structure of this document does not comply with the structural requirements
for such standards (e.g., this document does not contain mandatory clauses for
IEEE Standards [1]).

2. Usage of normative keywords has no implied semantics beyond technical lan-
guage. For example, usage of the words shall, should or may DOES NOT
imply conformance requirements or recommendations of implementations.

3. This document contains references, but without distinguishing between norma-
tive and informative references.

4. This document does not contain suggestions for assigning particular contents
to vehicles (e.g., IEEE 802 Working Groups, potential amendment projects for
existing standards, or potential new standard projects). As a consequence, the
clause structure of this document is intended for readability, rather than fitting
into the clause structure of a particular Standard (which would especially matter
for potential amendment projects).

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 10

206

207

209

210

Technical Descriptions for Cut-Through Forwarding in Bridges

3. Status of this Document

This document is work-in-progress. It contains technical and editorial errors, omis-
sions, simplifications and certain descriptions can be enhanced. Readers discovering
such issues are encouraged for making enhancement proposals, e.g. by proposing tex-
tual changes or additions to the author (johannes.specht.standards@gmail.com).

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 11

mailto:johannes.specht.standards@gmail.com

211

212

213

Technical Descriptions for Cut-Through Forwarding in Bridges

Part II.

Cut-Through Forwarding in
Bridges

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne

12

227
228

229

230

Technical Descriptions for Cut-Through Forwarding in Bridges

4. Overview and Architecture

This part of the document comprises technical descriptions for supporting CTF in
bridges. While this document is not a standard, there are published IEEE 802.1 Stan-
dards describing the operation of bridges without the descriptions herein. For differen-
tiation between bridges with support for CTF and bridges according to the published
IEEE 802.1 Standards (e.g., IEEE Std 802.1QJ2]), term CTF bridge is used in this
document to refer to the former, whereas term S&F bridge is used in this document
to refer to the latter. Like in IEEE Std 802.1Q, CTF bridges may or may not support
Virtual Local Area Networks (VLANS), and therefore terms VLAN-aware and VLAN-
unaware are used to distinguish between bridges with and without support for VLANs.

The architecture of CTF bridges is widely aligned with the bridge architecture in
IEEE Std 802.1Q [2, 8.2]. It is shown in Figure 4.1 in a compact form (see also the
architectural figures in IEEE Std 802.1Q [2, Figure 8-2, 8-3, 8-4, ff]).

Higher Layer Entities

Bridge Relay Entity

2,

. S .
Forwardin S Bridge Port
) &

Transmit and
Receive

IS8 ——— - 1SS ————- -

Generalized
Serial
Convergence

L ——-—- - W ——— -

Figure 4.1.: Architecture of a Cut-Through Forwarding (CTF) Bridge.

This architecture comprises the following elements:

1. Higher layer entities using the MAC Service (MS) via the MAC Service interface
defined in IEEE Std 802.1AC [3, clause 14].

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 13

231

232

233

234

252

253

255

256

Technical Descriptions for Cut-Through Forwarding in Bridges

2. A bridge relay entity (8) that relays frames between different bridge Ports.

3. Generalized serial convergence operations (6) per bridge Port that provide the
Internal Sublayer Service (ISS) via the Internal Sublayer Service Interface defined
in IEEE Std 802.1AC [3, clause 11].

4. Lower layers per bridge Port that are used by the generalized serial convergence
operations for providing the ISS.

5. Bridge Port transmit and receive operations (7) per Bridge port that transform
and transfer service primitive invocations between the bridge relay entity, higher
layer entities and the generalized serial convergence operations.

Excluded from this document are several details on higher layer entities' above the

MAC Service interface and elements of the bridge relay entity other than the forwarding

process?:

— For frames to and from higher layer entities, the bridge port transmit and receive
operations of a CTF bridge establish the behavior of S&F bridge at the MAC
service interface (7.2), allowing higher layer entities to operate according to the
behavior specified in IEEE 802.1 Standards unaltered.

— The forwarding process of a CTF bridges (re-)establishes the behavior of S&F
bridges at interaction points with other elements of the bridge relay entity.

Furthermore excluded are hybrid CTF bridges where the ISS in different bridge Ports
is provided by combinations of two or more of the following;:

— Generic serialized convergence operations (6).
— Standardized and specific MAC procedures [3, clause 13][2, 6.7].
— Other technologies providing the ISS.

In general, this document limits on use of Cut-Through for a subset of operations
standardized in IEEE Stds 802.1Q[2], 802.1AC[3] and 802.1CBJ[4] that is suitable for
demonstrating technical feasibility and for which CTF is applicable3.

I Examples for higher layer entities are Spanning Tree Protocols and Multiple Registration Protocols,
supported by LLC entities above the MAC service interface [2, item c¢) in 8.2 and b) in 8.3].

2An example element of the bridge relay entity other than the forwarding process is the learning
process [2, item c) in 8.2 and b) in 8.3].

3Defining CTF support for all protocols and procedures standardized by IEEE WG 802.1 and beyond
is not intended. Some of these protocols and procedures are in contradiction with CTF, for
example, if there is a strong dependency on the frame length. Fall-backs to S&F (5.4.3) are used
for modeling interaction points with such protocols and procedures within CTF bridges.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 14

257

268

Technical Descriptions for Cut-Through Forwarding in Bridges

5. Modeling Principles

5.1. Frame Types

If necessary, distinct terms for are used for frames for describing their current state,
as follows:

frame under reception A frame that is being serially received from LAN for which
reception began bit did not finish.

received frame A frame that was serially received from a LAN that finished reception.

frame under transmission A frame that is being serially transmitted to a LAN for
which transmission began bit did not finish.

transmitted frame A frame that was serially transmitted to a LAN that finished trans-
mission.

5.2. Modeling of Service Primitives

All invocations of service primitives in this document are atomic. That is, each invo-
cation is non-decomposable (see also 7.2 of IEEE Std 802.1AC[3] and [5]). Semantics
of the ISS (6.2.2) and EISS (7.4) in terms of service primitives, their parameters, etc.
is refined in this document for the CTF operation, allowing for accurate description
of operations within a CTF bridge. This refined model comprises the following:

1. The parameters of a service primitive are explicitly modeled as bit arrays.

2. The values of parameters during invocations of a service primitive are passed
according to a call-by-reference scheme.

3. A service primitive provides two attributes', ’start and ’end. These attributes
are used in subsequent descriptions to indicate the temporal start and the end
of the indication, respectively.

In a series of sequential processing stages (e.g., the processes introduced in 6.1 or a
sub-process of the forwarding process in 8), this model allows later processing stages
to access contents in service primitive parameters that are incrementally added by an
earlier processing stage. The ’start and end attributes can, but are not required to, be
in temporal relationship with the duration of frames on the physical layer.

IThe concept of attributes is inspired by the Very High Speed Integrated Circuits Hardware De-
scription Language, VHDL[6], which provides predefined attributes (e.g., transaction) that allow
modeling over multiple VHDL simulation cycles at the same instant of simulated time.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 15

285

287

288

290

291

293

294

205

296

298

299

301

302

304

Technical Descriptions for Cut-Through Forwarding in Bridges

5.3. Parameter-based Modeling

At higher processing stages, service primitives of frames and processing of these frames
themselves is modeled at parameter level accuracy. The purpose of this model is to

1. provide means for compact description of temporal control (5.4) in and across
processing stages,

2. enable re-use of existing transformation rules from IEEE 802.1 Stds, and

3. avoid low level details that would not provide any value to the clarity and un-
ambiguous descriptions.

The parameter-based modeling uses the resolution of symbolic and/or numeric param-
eters instead of bit arrays (5.2). A parameter is said to be complete at the earliest
instant of time at which the minimal information is available to unambiguously deter-
mine the parameter’s value within the specified valid value range of such parameter.
The minimal information may be

1. a coherent sequence of bits in a frame (e.g., eight subsequent bits forming an
octet),

2. the result of composition and/or computation across bits located at various lo-
cations in a frame,

3. frame information not encoded in particular bits (e.g., frame length),
4. based on out-of-band information, or
5. combinations of the aforesaid.

As an example, the vlan _identifier parameter of EM_UNITDATA indication (7.4)
invocations can be derived from a subset of underlying bits of the associated SDU
parameter of M_ DATA indication invocations (6.2.1) that are located in a VLAN Tag
[2, 9.6] according to the specification of the Support for the EISS defined in IEEE Std
802.1Q [2, item e) in 6.9.1] or originate from out-of-band information like a configured
per-Port PVID parameter [2, item d) in 6.9, item f) in 6.9.1 and 12.10.1.2]. If the
VLAN tag is required to unambiguously determine the vlan identifier parameter,
the parameter is complete when all bits of the VID parameter? in the VLAN Tag
where received. Most of the data transformations between bits in a frame, frame
parameters and potential out-of-band information is already unambiguously specified
in the relevant IEEE 802.1 Standards. This document omits repetition of already
specified transformations and instead just refers to the relevant transformations in
existing IEEE 802.1 Standards.

2The bits and potential out-of-band information form the minimal information, and exclude any
redundant information, most prominently the (in-band) redundant encoding of the VID parameter
in the frame’s FCS parameter.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 16

318

322

323

324

325

327

328

329

330

331

332

337

338

339

340

342

343

345

346

347

348

349

350

351

Technical Descriptions for Cut-Through Forwarding in Bridges

5.4. Temporal Control

5.4.1. Processing Stalls

Parameter-based modeling is used for onvenient formulation of temporal control state-
ments in processing stages. A processing stage (5.2) may stall further processing of a
frame under reception, including (but not limited to) passing this frame to a subse-
quent processing stage, until one or more parameters are complete (5.3), subject to the
implicit discarding due to late errors (5.4.2). Most processing stalls are given due to the
data dependencies already specified in IEEE 802.1 Standards (e.g., Ingress Filtering as
part of the forwarding process in IEEE Std 802.1Q[2, 8.6.2] depends on the availability
of a frame’s VID, which therefore implicitly requires completion of the vlan identifier
parameter of EM_UNITDATA .indication invocations), however, explicit modeling of
processing stalls may be expressed by formulations in natural language.
Example formulations:

1. “Processing stalls pending the vlan_ identifier parameter.”

2. “Further execution in a CTF bridge is stalled pending the destination address
of a frame under reception prior to the filtering database lookup of the destination
ports.”

A processing stall does not become effective if all associated parameters of a frame are
complete at the point where the processing stall is defined.

5.4.2. Late errors

In a sequence of processing stages, an earlier processing stage may discover an error
in a frame under reception and then notify all subsequent (not antecedent) processing
stages, which may then implement error handling upon this such notification. This is
termed as a late error, which is raised by the earlier processing stage and associated
with a particular frame under reception. If any of the subsequent stage stalls processing
pending one or more parameters of the associated frame under reception when the error
is raised, the frame is discarded in the subsequent stage and thereby neither further
processed nor passed to any other following processing stage.

5.4.3. Fall-backs to S&F

The descriptions of the processing stages use fall back to SEF as a modeling shortcut
to summarize the following sequence:

1. Processing of a frame under reception stalls pending the frame’s end of reception,
which is a shortcut by itself for stalling processing pending all parameters of a
frame under reception, including the FCS.

2. Dependent on whether or not a late error was indicated by an earlier processing
stage for that frame while processing stalls, processing continues or the frame is
discarded:

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 17

360

Technical Descriptions for Cut-Through Forwarding in Bridges

a) Late error indicated:
The frame is discarded prior to any further processing by any stage.

b) No Late error indicated:
Processing of the frame continues through subsequent processing steps and
stages according to the standardized behavior of an S&F bridge.

5.4.4. Instantaneous Operations

In absence of processing stalls, processing stages in this document perform their oper-
ations instantaneously. It is clear that idealistic instantaneous operations, in terms of
0-delay at an infinite high resolution®, are not possible in real world implementations.
Physics, design decisions and design constraints introduce additional delays in such
implementations. The model is not intended to upper limit such delays. It is there for
describing data dependencies, late error handling and the resulting externally visible
behavior. Additional delays (e.g., real world implementations starting transmissions
on a physical medium later than the model) are not described by the model, but
could be determined by observation/measurement and are available as management
parameters (9.3).

3The semantics of “instantaneous” depends on the resolution [7, p.11].

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 18

371

373

374

375

377

378
379

380

Technical Descriptions for Cut-Through Forwarding in Bridges

6. Generalized Serial Convergence
Operations

6.1. Overview

The generalized serial convergence operations are described by a stack of processes
that interact via global variables (see 6.4) and service primitive invocations (see 6.2).
These processes provide an Internal Sublayer Service [3, clause 1] for the upper layers
of a CTF bridge, and are intended to support a broad range of lower layers, including
(but not limited to) physical layers. Figure 6.1 provides an overview of these processes

M_UNITDATA.request Internal Sublayer

M_UNITDATA.Indication Service (ISS)

‘ Receive Convergence ‘ ‘ Transmit Convergence ‘

M_DATA.request

M_DATA.Indication

‘ Generic Frame Receive ‘ Generic Frame Transmit ‘

TxBitStatus TxBitEnable TxBit
RxBitStatus RxBitEnable RxBit

‘ Generic Data Receive Generic Data Transmit ‘

! TxDataStatus TxDataEnable |TxData Lower Layer
RxData

T T TRepatastatue |Rubatabnable |Rxbata © & ~ 7 7 Interface (LLI)

Lower Layer

NOTATION

—> :Aglobal variable set solely by the originating process.

— : A global variable set the originating process and reset by the receiving process.
———= : A service primitive.

Figure 6.1.: Overview of the generalized serial convergence operations.

and their interaction'. The processes can be summarized as follows:

1. A Receive Convergence process (6.8) that translates each invocation of the M_ DATA .-

IThis interaction model is inspired by clause 6 and 8.6.9 of IEEE Std 802.1Q][2].

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 19

397

398

399

400

401

403

404

405

406

407

408

Technical Descriptions for Cut-Through Forwarding in Bridges

indication service primitive (6.2.1) into a corresponding invocation of the M_ UNIT-
DATA indication service primitive (6.2.2).

2. A Generic Frame Receive process (6.7) that generates M_ DATA indication in-
vocations for bit sequences originating from the Generic Data Receive process of
at least LEN_MIN (6.3.5) bits.

3. A Generic Data Receive process (6.6) that translates a lower layer-dependent?
serial data stream into delineated homogeneous bit sequences of variable length,
each typically representing a frame.

4. A Transmit Convergence process (6.11) that translates each invocation of the
M _UNITDATA . request service primitive into a corresponding invocation of the
M _DATA request service primitive.

5. A Generic Frame Transmit process (6.10) that translates M_ DATA request in-
vocations into bit sequences for the Generic Data Transmit process.

6. A Generic Data Transmit process (6.9) that translates bit sequences from the
Generic Frame Transmit process into a lower layer-dependent serial data stream.

The generalized serial convergence operations are heavily inspired by the concepts de-
scribed in slides by Roger Marks [8, slide 15], but follow a different modeling approach
with more formalized description of the processes and incorporate some of the following
concepts, as suggested by the author of this document during the Nendica meetings
on and after August 18, 2022. Some differences can be summarized as follows:

— Alignment with state machine diagram conventions of IEEE Std 802.1Q[2, Annex

— Support for serial data streams from lower layers with arbitrary data word length
(6.3.7)3.

— Explicit temporal modeling of atomic ISS service primitive invocations (5).
— Relaxed frame length constraints (6.3.5 and 6.3.6).

By keeping ISS service primitive invocations atomic, the approach in this section pro-
vides compatibility with the definition from IEEE Std 802.1 AC [3, 7.2].

2Such a lower layer may be an entity on the physical layer (PHY), but the generalized receive
operations are not limited to this.

3This generalization is intended to allow a wide range of lower layers. This includes physical layer
interfaces (see A.l), but the support for word sizes (e.g., 8 bits, 32 bits or 64 bits) may be
close to internal interfaces of real world implementation. It is subject to discussion whether this
generalization over [8] introduced by the author are needed or not.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 20

409

Technical Descriptions for Cut-Through Forwarding in Bridges

Algorithm 6.1 Signature of the M DATA indication service primitive.

M_ DATA .indication(DA, SA, MSDU, FCS)

Algorithm 6.2 Signature of the M_DATA .request service primitive.

M_DATA. request(DA, SA, MSDU, FCS)

6.2. Service Primitives

6.2.1. M_DATA.indication and M __DATA. request

The M_DATA. indication service primitive passes the contents of a frame from the
Generic Frame Receive process to the Receive Convergence process. The M DATA .-
request service primitive passes the contents of a frame from the Transmit Convergence
process to the Generic Frame Transmit process. The parameter signatures of the
service primitives are as shown in Algorithm 6.1 and Algorithm 6.2%.

The parameters are defined as follows:
6.2.1.1. DA
An array of zero to LEN _ADDR (6.3.3) bits, containing the destination address of a
frame.

6.2.1.2. SA
An array of zero to LEN_ADDR (6.3.3) bits, containing the source address of a frame.

6.2.1.3. MSDU

An array of zero or more bits, containing a service data unit of a frame. The number
of bits after complete reception of a frame is an integer multiple LEN OCT (6.3.2).

6.2.1.4. FCS

An array of zero to LEN_FCS (6.3.4) bits, containing the frame check sequence of a
frame.

6.2.2. M_UNITDATA.indication and M UNITDATA request

As specified in IEEE Std 802.1AC[3, 11.1], with the identical parameter signatures as
shown in Algorithm 6.3 and Algorithm 6.4.

4The parameters in this version of this document limit to those introduced in Roger Marks’ GSCF
slides [8]. Future versions may introduce more flexibility (e.g., for IEEE Std 802.11 [9, 9.2]).

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 21

431

432

Technical Descriptions for Cut-Through Forwarding in Bridges

Algorithm 6.3 Signature of the M UNITDATA indication service primitive.

M _UNITDATA.indication(
destination address,
source address,
mac_service data unit,
priority, drop _eligible,
frame check sequence,
service access point identifier,
connection identifier

Algorithm 6.4 Signature of the M UNITDATA .request service primitive.

M_UNITDATA. request(
destination address,
source address,
mac_service data unit,
priority, drop _eligible,
frame check sequence,
service access point identifier,
connection identifier

6.3. Global Constants
6.3.1. PREAMBLE

A lower layer-dependent array of zero® or more bits, containing the expected preamble
of each frame.

6.3.2. LEN_OCT
The integer number eight (8), indicating the number of bits per octet.

6.3.3. LEN_ADDR

An integer denoting the length of the DA and SA parameters of M DATA .indication
parameters, in bits. For example,

LEN _ADDR = 48 (6.1)

indicates an EUI-48 addresses.

5Including length zero permits to support lower layers that do not expose a preamble to the Generic
Data Receive process.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 22

441

443

444

Technical Descriptions for Cut-Through Forwarding in Bridges

6.3.4. LEN_FCS

An integer denoting the length of frame check sequence and the length FCS parameter
of M_DATA. indication parameter, respectively, in bits. For example,

LEN_ FCS = 32 (6.2)

indicates a four octet frame check sequence.

6.3.5. LEN_MIN

A lower layer-dependent integer, denoting the minimum length of a frame, in bits.
Invocation of the M DATA .indication service primitive starts once the Generic Frame
Receive process received the first LEN MIN bits of a frame. Values for LEN MIN
with

LEN_MIN > PREAMBLE.length + LEN _FCS (6.3)

are valid.

6.3.6. LEN MAX

A lower layer-dependent integer, denoting the maximum length of a frame, in bits. In-
vocation of the M DATA .indication service primitive ends at latest once the Generic
Frame Receive process received at most LEN MAX bits of a frame. Values for
LEN _ MIN with

LEN_ MAX > PREAMBLE length + 2LEN_ADDR + LEN_FCS (6.4)

are valid.

6.3.7. LEN_ DATA

A lower layer-dependent integer, denoting the data width of the RxData and TxData
variables, in bits.

6.4. Global Variables
6.4.1. RxBitEnable

A Boolean variable, set by the Generic Data Receive process and reset by the Generic
Frame Receive process, which indicates an update of the RxBit variable, RxBitStatus
variable, or both.

6.4.2. RxBit

A bit variable used to pass a single bit value to the Generic Frame Receive process.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 23

Technical Descriptions for Cut-Through Forwarding in Bridges

Algorithm 6.5 Definition of data type low_data_t.

typedef struct {
Boolean start;
Boolean end;
bit [] value;
} low_data_t;

6.4.3. RxBitStatus

An enumeration variable used to pass the receive status from the Generic Data Receive
process to the Generic Frame Receive process. The valid enumeration literals are as
follows:

IDLE Indicates that the Generic Data Receive process does not pass bits of a frame
to the Generic Frame Receive process.

RECEIVING Indicates that the Generic Data Receive process passes bits of a frame
to the Generic Frame Receive process without knowledge of the frame length.

TRAILER Indicates that the Generic Data Receive process passes bits of a frame to
the Generic Frame Receive process with the knowledge that LEN FCS or less
bits follow.

6.4.4. RxDataEnable

A Boolean variable, set by a lower layer and reset by the Generic Data Receive process,
which indicates an update of the RxData variable, RxDataStatus variable, or both.

6.4.5. RxData

A variable of composite data type low_data_t, used for serially passing data words of
frames from a lower layer to the Generic Data Receive process. Type low data_t is
defined in Listing 6.5. The semantics of the constituent parameters is as follows®:

start Indicates whether the data word is the first word of a frame (TRUE) or not
(FALSE).

end Indicates whether the data word is the last word of a frame (TRUE) or not
(FALSE).

value A lower layer-dependent non-empty array of up to LEN DATA (6.3.7) bits,
containing a data word of a frame. An array length less than LEN DATA bits
is only valid if end is TRUE.

6RxData and RxDataStatus contain redundant information, which may disappear in a future version
of this document.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 24

496

Technical Descriptions for Cut-Through Forwarding in Bridges

6.4.6. RxDataStatus

An enumeration variable used to pass the receive status from lower layers to the Generic
Data Receive process. The valid enumeration literals are as follows:

IDLE Indicates that data stream reception from lower layers is not active.

RECEIVING Indicates that data stream reception from lower layers is active.

6.4.7. TxBitEnable

A Boolean variable, set by the Generic Frame Transmit process and reset by the
Generic Data Transmit process, which indicates an update of the TxBit variable.

6.4.8. TxBit

A bit variable used to pass a single bit value of a frame’s bit stream to the Generic
Data Transmit process.

6.4.9. TxBitStatus

An enumeration variable that indicates the transmission state from the Generic Frame
Transmit process to the Generic Data Transmit process. The valid enumeration literals
are as follows:

IDLE Indicates that the Generic Frame Transmit process is not generating the bit
stream of a frame.

TRANSMITTING Indicates that the Generic Frame Transmit process is generating
the bit stream of a frame.

6.4.10. TxDataEnable

A Boolean variable, set by the Generic Data Transmit process a lower layer and reset
by the lower layer, which indicates an update of the TxData variable.

6.4.11. TxData

A variable of composite datatype low data_t (6.5), used for serially passing data
words of frames from the Generic Data Transmit process to a lower layer.

6.4.12. TxDataStatus

An enumeration variable that indicates the transmission state from the Generic Data
Transmit process to the lower layer. The valid enumeration literals are as follows:

IDLE Indicates that the Generic Data Transmit process is not generating the data
stream of a frame.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 25

531

532

533

535

536

Technical Descriptions for Cut-Through Forwarding in Bridges

TRANSMITTING Indicates that the Generic Data Transmit process is generating the
data stream of a frame.

6.5. Global Functions
6.5.1. append(bitArray,bit)

Appends a given bit at the end of a bit array variable and increases the length of the
variable by one.

6.5.2. insert(bitArray,index,bit)

Inserts the bit at the given index into the given bit array variable.

6.5.3. remove(bitArray,index)

Removes and returns the bit at the given index of the given bit array variable.

6.6. Generic Data Receive process

6.6.1. Description

The Generic Data Receive process translates a lower layer dependent serial data stream
into a uniform bit stream and implements delay line of LEN _FCS bits to determine
the value of the RxBitStatus variable.

6.6.2. State Machine Diagram

The operation of the Generic Data Receive process is specified by the state machine
diagram in Figure 6.2 , using the variables defined in subsequent sub-clauses.

6.6.3. Variables
6.6.3.1. cnt

An integer counter variable, used for indexing bits in the RxData variable.

6.6.3.2. buf

A bit array variable for buffering bits from the RxData variable and forming a delay
line.

6.6.3.3. rxDataEnd

A Boolean variable, set when the data stream of a frame ends and used to determine
the transition to the trailer of a frame in the RxBitStatus variable.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 26

Technical Descriptions for Cut-Through Forwarding in Bridges

BEGIN

WAIT_RECEIVE_DATA g

buf = new bit[];
RxBitStatus = IDLE;
rxDataEnd = FALSE;

| RxDataStatus == RECEIVING
&& RxDataEnable == TRUE

RxDataEnable == TRUE if (RxDataEnable == TRUE) {

for (cnt = 0; cnt < RxData.value.length; cnt++) {
append(buf, RxData.value(cnt));

}

RxDataEnable = FALSE;

RxBitEnable == FALSE | | [RECEIVE_DATA

}
if (RxDataStatus == IDLE) {
rxDatakEnd = TRUE;
}
if (RxBitEnable == FALSE) {
if (buf.length>=LEN_FCS && RxBitStatus == IDLE) {
RxBit = remove(buf,0);
RxBitEnable = TRUE;
RxBitStatus = RECEIVING;
} else if (buf.length>=LEN_FCS && RxBitStatus == RECEIVING) {
RxBit = remove(buf,0);
RxBitEnable = TRUE;
if (rxDataEnd == TRUE) RxBitStatus = TRAILER;
} else if (buf.length>0 && RxBitStatus == TRAILER) {
RxBit = remove(buf,0);
RxBitEnable = TRUE;
}

}

rxDataEnd == TRUE && RxBitEnable == FALSE &&
((RxBitStatus == TRAILER && buf.length == 0) | | RxBitStatus == IDLE)

Figure 6.2.: State Machine Diagram of the Generic Data Receive process.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne

Technical Descriptions for Cut-Through Forwarding in Bridges

6.7. Generic Frame Receive process

6.7.1. Description

The Generic Frame Receive process transforms a serial bit streams of frames from the
Generic Data Receive process into invocations of the M DATA indication primitive.

6.7.2. State Machine Diagram

The operation of the Generic Frame Receive process is specified by the state machine
diagram in Figure 6.3 | using the variables and functions defined in subsequent sub-
clauses.

6.7.3. Variables

6.7.3.1. cnt

An integer counter variable, used to count the number of bits in a parameter of a
frame under reception.

6.7.3.2. len

An integer variable holding the actual length of a frame under reception, in bits.

6.7.3.3. buf
A bit array variable for buffering up to LEN OCT bits of the MSDU parameter.

6.7.3.4. status

An enumeration variable holding the current status of the Generic Frame Receive
process. The valid enumeration literals are as follows:

Ok Indicates that no error has been discovered prior or during frame reception.
FrameToolLong Indicates that a frame under reception exceeded LEN MAX bits.

FCSlInvalid Indicates inconsistency between the FCS parameter and the remaining
parameters of a frame under reception.

6.7.4. Functions
6.7.4.1. FCSValid(FCS)

The FCSValid function determines if the FCS parameter consistent with the remaining
parameters of the M_ DATA indication service primitive (TRUE) or not (FALSE). A
late error associated with the frame under reception is raised (5.4.2) if the function
returns FALSE.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 28

Technical Descriptions for Cut-Through Forwarding in Bridges

BEGIN

Lagl INIT_PREAMBLE
cnt = 0; len = 0; status = OK; buf = new bit[];

DA = new bit[]; SA =new bit[];

MSDU =new bit[]; FCS = new bit[];

A

RxBitEnable == TRUE &&
RxBitStatus == RECEIVING

status == Ok && PROCESS_PREAMBLE
RxBitStatus == RECEIVING &&[if (RxBit |= PREAMBLE[cnt]) status = Preamblelnvalid; status != Ok

RxBitEnable == TRUE && cnt = (cnt + 1) % PREAMBLE.length;
cnt!=0 RxBitEnable = FALSE;

status == Ok && RxBitStatus == TRAILER
&& RxBitEnable == TRUE

status == Ok && RxBitStatus == RECEIVING
&& RxBitEnable == TRUE && cnt == 0

status == Ok && PROCESS_DA

RxBitStatus == RECEIVING && E append(DA,RxBit);

RxBitEnable == TRUE &&| [Nt =(cnt +1) % LEN_ADDR;
cnt!=0 len++; RxBitEnable = FALSE;
if (len == LEN_MIN) M_DATA.indication(DA,SA,MSDU,FCS)start;
status == Ok && RxBitStatus == RECEIVING
&& RxBitEnable == TRUE && cnt == 0

status == Ok && RxBitStatus == TRAILER
&& RxBitEnable == TRUE && cnt == 0

status == Ok && PROCESS_SA

RxBitStatus == RECEIVING && [append(SA,RxBit);

RxBitEnable == TRUE && cnt = (cnt + 1) % LEN_ADDR;
cntl=0 len++; RxBitEnable = FALSE;
if (len == LEN_MIN) M_DATA.indication(DA,SA,MSDU,FCS)‘start;

status == Ok && RxBitStatus == TRAILER| status == Ok && RxBitStatus == RECEIVING

&& RxBitEnable == TRUE && cnt == && RxBitEnable == TRUE && cnt == 0

PROCESS_MSDU

append(buf,RxBit);
if (buf.length = LEN_OCT) {

status == Ok &&
RxBitStatus == RECEIVING && for (ent = 0; cnt < LEN_OCT; cnt++) {
RxBitEnable == TRUE append(MSDU,remove(buf,0));
}

buf = new bit(];
}
len++; RxBitEnable = FALSE;
if (len == LEN_MIN) {
M_DATA.indication(DA,SA,MSDU,FCS)start;
}else if (len+LEN_FCS == LEN_MAX) {
status = FrameToolong;

}
(status == Ok && RxBitStatus == TRAILER
* * && RxBitEnable == TRUE) || status == FrameToolong
INIT_TRAILER |
cnt=0;
ucTt

PROCESS_TRAILER

append(FCS,RxBit);
RxBitStatus == TRAILER && ent=cnt+1;
RxBitEnable == TRUE && [len++; RxBitEnable = FALSE;
cntl=0 i (len == LEN_MIN) {
M_DATA.indication(DA,SA,MSDU,FCS)start;
}

cnt == LEN_FCS

FINISH_FRAME
if (IFCSValid(FCS)) {
status == Ok | Status = FCSInvalid;
} else if (status == Ok) {
M_DATA.indication(DA,SA,MSDU,FCS)‘end;

status != Ok

}
ABORT_OR_ERROR
if (LEN_MIN <= len <= LEN_MAX) {
M_DATA.
indication(DA,SA,MSDU,FCS)‘end;
}
// Error Handling
Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 29

Figure 6.3.: State Machine Diagram of the Generic Frame Receive process.

Technical Descriptions for Cut-Through Forwarding in Bridges

6.8. Receive Convergence process

The Receive Convergence process implements the translation of M DATA .indication
invocations to M_ UNITDATA .indication invocations. The supported translations are
lower layer-dependent and include, but not limited to, those specified in clause 13 of
IEEE Std 802.1ACJ3].

Each M _DATA indication invocation results in an associated M_UNITDATA -
indication invocation. During the translation, the M UNITDATA indication param-
eters are determined based on the the M_DATA. indication parameters according to
the rules defined for the underlying lower layer”.

6.9. Generic Data Transmit process

The Generic Data Transmit process translates a uniform bit stream into a lower layer-
dependent serial data stream.

6.9.1. State Machine Diagram

The operation of the Generic Data Transmit process is specified by the state machine
diagram in Figure 6.4.

6.9.2. Variables
6.9.2.1. cData

A variable of type low data_t (6.5), used for preparing the next data element passed
to the lower layer via the TxData variable.

6.10. Generic Frame Transmit process

6.10.1. Description

The Generic Frame Transmit process transforms invocations of the M_ DATA .request
primitive from the Transmit Convergence Process into bit streams of frames.

6.10.2. State Machine Diagram

The operation of the Generic Frame Transmit process is specified by the state machine
diagram in Figure 6.5 , using the variables subsequently defined.

“See also [8, p. 21].

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 30

Technical Descriptions for Cut-Through Forwarding in Bridges

BEGIN
WAIT_TRANSMITTING l—
cData.start = TRUE; cData.end = FALSE; cData.value = new bit[];
TxDataStatus = IDLE; TxDataEnable = FALSE;
VTXBitStatUS == TRANSMITTING
&& TxBitEnable == TRUE
PROCESS_BIT
if (cData.start == TRUE) {
TxBitEnable == TRUE && TxDataStatus = TRANSMITTING;
TxDataEnable = FALSE [}
append(cData.value, TxBit);
if (cData.length == LEN_DATA && TxBitStatus == TRANSMITTING) {
TxData = cData;
TxDataEnable = TRUE;
cData.start = FALSE;
cData.value = new bit[];
}
TxBitEnable = FALSE;
TxBitStatus == IDLE &&
TxBitEnable == FALSE
PROCESS_LAST
cData.end = TRUE;
TxDataEnable = TRUE;
TxData = cData;
[
TxDataEnable == FALSE
Figure 6.4.: State Machine Diagram of the Generic Data Transmit process.
Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 31

Technical Descriptions for Cut-Through Forwarding in Bridges

BEGIN

WAIT_REQUEST l—

TxBitStatus = IDLE;
cnt=0; len=0;

DA = null; SA = null;
MSDU = null; FCS = null;

M_DATA.request(DA,SA,MSDU,
FCS)'start

GENERATE PREAMBLE
TxBitStatus = TRANSMITTING;
TxBit = PREAMBLE[cnt];

TxBitEnable == FALSE &&

cnt!=0 TxBitEnable = TRUE;
cnt = (cnt + 1) % PREAMBLE.length;
TxBitEnable == FALSE &&
cnt==0
/
GENERATE_DA

TxBit = DA[cnt];
TxBitEnable = TRUE;
cnt = (cnt + 1) % DA.length;

TxBitEnable == FALSE &&
cnt!=0

TxBitEnable == FALSE &&
cnt==0

GENERATE_SA

cnt!=0 TxBitEnable = TRUE;
cnt = (cnt + 1) % SA.length;

TxBitEnable == FALSE &&
cnt==

GENERATE_MSDU

TxBit =MSDU[cnt];
TxBitEnable = TRUE;
cnt = (cnt + 1) % MSDU.length;

TxBitEnable == FALSE &&
cnt!=0

TxBitEnable == FALSE &&
cnt==

GENERATE_FCS

TxBit =FCS[cnt];
TxBitEnable = TRUE;
cnt = (cnt + 1) % FCS.length;

TxBitEnable == FALSE &&
cnt!=0

TxBitEnable == FALSE &&I-: TxBit = SA[cnt];

TxBitEnable == FALSE &&
cnt==0

Figure 6.5.: State Machine Diagram of the Generic Frame Transmit process.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne

32

604

606

607

Technical Descriptions for Cut-Through Forwarding in Bridges

6.10.3. Variables
6.10.3.1. cnt

An integer counter variable, used to count the number of bits in a parameter of a
frame under transmission.

6.11. Transmit Convergence process

The Transmit Convergence process implements the translation of M UNITDATA.-
request invocations to M DATA request invocations. The supported translations are
lower layer-dependent and include, but not limited to, those specified in clause 13 of
IEEE Std 802.1AC[3].

M _UNITDATA request invocations results in an associated M_DATA request in-
vocation. During the translation, the M_DATA .request parameters are determined
based on the M_UNITDATA request parameters according to the rules defined for
the underlying lower layer®.

8See also [8, p. 21].

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 33

617

619

620

621

622

623

625

626

628

Technical Descriptions for Cut-Through Forwarding in Bridges

7. Bridge Port Transmit and
Receive Operations

7.1. Overview

The architecture of the bridge Port transmit and receive operations in CTF bridges
is based on the architecture found in S&F bridges with additions for CTF. The archi-
tecture in CTF bridges is shown in Figure 7.1 and Figure 7.2 for VLAN-unaware and

Bridge Relay
Entity
+ Higher Layer Higher Layer
v Entftes Entftes
(1SS) I I
Priority Signaling + +
(1SS) (mS) (mS)
Higher Layer Higher Layer
CTF Sublayer Compatibility Compatibility
(1SS) (1SS) (1SS)
| | H . .
;— ————————————————————————————————— ' Bridge Port Connectivity
(1SS)
\4
LAN

Figure 7.1.: Bridge Port Transmit and Receive (VLAN-unaware).

VLAN-aware CTF bridges, respectively. The elements contained are as follows:

1. Bridges Port Connectivity (7.2) between the access points of the ISS.

2. Priority Signaling in VLAN-unaware CTF bridges (7.4).

3. Translations between ISS and EISS in VLAN-aware CTF bridges (7.4).

4. Higher Layer Compatibility (7.5).

5. CTF Sublayer (7.6).

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 34

630

631

632

634

635

636

637

639

640

641

643

644

645

646

648

649

650

Technical Descriptions for Cut-Through Forwarding in Bridges

Bridge Relay
Entity
+ Higher Layer Higher Layer
v Entitites Entitites
(EISS) A A
EISS<>ISS Translations + +
(1SS) (mS) (mS)
Higher Layer Higher Layer
CTF Sublayer Compatibility ‘ Compatibility
(1SS) (1SS) (1SS)
| | H . .
;— ————————————————————————————————— ' Bridge Port Connectivity
(1SS)
v
LAN

Figure 7.2.: Bridge Port Transmit and Receive (VLAN-aware).

7.2. Bridge Port Connectivity

Bridge Port connectivity in CTF bridges is as specified for S&F bridges specified in
IEEE Std 802.1Q [2, 8.5.1] with the additional definitions as follows.

For frames under reception originating from the LAN, a copy of such frames for
each upper access point is created prior to passing each copy towards the respective
upper access point. Frames from the upper access points towards the LAN are passed
instantaneously. The multiplexing rules towards the LAN are identical to those of S&F
bridges with the addition that frames under reception originating from the bridge relay
entity are treated as received frames.

7.3. Priority Signaling

7.3.1. Receive path operations

VLAN-unaware CTF bridges may or may not implement a shim for support of the ISS
with signaled priority to determine values of the drop _eligible and priority parameters
(6.2.2) from frames destined towards the bridge relay entity that contain a C-Tag
(Customer VLAN Tag) or S-Tag (Service VLAN Tag or Backbone VLAN Tag).

If the shim is not implemented, frames under reception are passed towards the bridge
relay entity instantaneously. If the shim is implemented, shim is as specified in IEEE
Std 802.1Q [2, 6.20] with additional definitions for frames under reception as follows.

Frames under reception are stalled pending the initial four octets of the mac -
service_data_unit parameter. If the first two octets indicate a C-Tag [2, Table 9-
1], the priority and drop_ eligible parameters are decoded from the Tag’s Control
Information [2, 9.6] in the subsequent two octets prior to passing the frame towards the

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 35

661

662

663

664

665

666

667

669

670

671

672

674

675

677

678

680

681

682

Technical Descriptions for Cut-Through Forwarding in Bridges

bridge relay entity instantaneously. For any other VLAN Tag [2, Table 9-1], processing
falls back to S&F. In absence of any VLAN Tag, the frame is passed towards the bridge
relay entity instantaneously.

For frames under reception, the invocation of M_ UNITDATA . .indication (M_ UNIT-
DATA .indication’start) towards the bridge relay entity starts when the frame is passed
to the bridge relay entity according to the aforesaid definitions, and ends when the orig-
inating invocation of M_ UNITDATA .indication ends (M_ UNITDATA .indication’end)?.

7.3.2. Transmit path operations

All frames originating from the bridge relay entity are passed towards bridge Port
connectivity (7.2) instantaneously.

7.4. Translations between Internal Sublayer Service
(1SS) and Enhanced Internal Sublayer Service
(EISS)

7.4.1. Receive path operations

The translations from ISS to EISS can extract and decode C-Tags from the mac -
service_data_unit parameter and discard tagged or untagged frames dependent on
management parameters. The operations are as specified in IEEE Std 802.1Q(2, 9.6.1],
with the following additional definitions for frames under reception.

Frames under reception are stalled pending the initial four octets of the mac -
service data_unit parameter. The frame is then discarded according to the rules
specified in IEEE Std 802.1Q [2, 6.9.1], or further processed as follows:

— If the first two octets indicate a C-Tag [2, Table 9-1], the vlan _identifier, priority
and drop_eligible parameters are decoded from the Tag’s Control Information
[2, 9.6] in the subsequent two octets, the first four octets are removed from mac_ -
service_data_unit parameter 2, and the frame is passed towards the bridge relay
entity instantaneously.

— If the first two octets indicate a VLAN Tag other than a C-Tag, processing falls
back to S&F.

— In all other cases, the frame is passed towards the bridge relay entity instanta-
neously.

For frames under reception, the invocation of EM_UNITDATA indication (EM_ UNIT-
DATA .indication’start) towards the bridge relay entity starts when the frame is passed

I This definition is intended to support the understanding of temporal relationships (e.g., distinction
between “frame under reception” and “received frame”).

2For illustration, removal can be translated to 32 invocations of the re-
move(mac_service data_unit,0) function in 6.5.3.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 36

Technical Descriptions for Cut-Through Forwarding in Bridges

ee3 to the bridge relay entity according to the aforesaid definitions, and ends when the orig-
esa inating invocation of M_ UNITDATA .indication ends (EM_UNITDATA .indication’end).

ws 7.4.2. Transmit path operations

ese The translations from EISS to ISS on the transmit path of S&F bridges can discard, en-
ez code and insert C-Tags into the mac_service data_unit parameter®. The operations
ess are as specified in IEEE Std 802.1Q [2, 9.6.2]*.

« (.5. Higher Layer Compatibility

oo Higher layer compatibility ensures that only frames with consistent FCS are passed
eor via the MAC Service Interface to higher layer entities. Therefore, a CTF bridge falls
eo2 back to S&F prior to passing copies of frames under reception towards higher layer
eo3 entities and performs the translation between the service primitives of the ISS and the
s0s MAC Service as defined in IEEE Std 802.1 AC [3, clause 14].

o 1.060. CTF Sublayer

ws 7.0.1. Receive Path Operations

ez For frames under reception destined towards the bridge relay, the CTF sublayer can
eos emit late errors and fall back to S&F based on the CTFReceptionEnable parameter
699 (9.24).

700 If CTFReceptionEnable is FALSE, processing of a frame under reception is stalled
ra1 pending all parameters of this frame, including the FCS. If the frame’s FCS is con-
702 sistent, the frame is passed towards the bridge relay instantaneously and discarded
703 otherwise.

708 If CTFReceptionEnable is TRUE, a frame under reception is towards the relay (7.4
705 and 7.3) instantaneously.

707 The CTF sublayer maintains reference to frames under reception after passing these
zos frames towards the bridge relay. If a frame’s FCS is inconsistent, the following opera-
700 tions are performed:

710 — A late error associated with this frame is raised.

er — A frame error counter is increased (7.6.3).

3Modifications of the mac_service data_unit parameter in accordance with ISO/IEC 11802-5,
IETF RFC 1042 (1988) and IETF RFC 1390 (2, 9.6.2] are incorporated into the queuing decision
logic (8.12).

4For illustration, insertion can be translated to 32 invocations of the in-
sert(mac_ service data_unit,0,bit) function in 6.5.2.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 37

725

730

731

732

733

Technical Descriptions for Cut-Through Forwarding in Bridges

7.6.2. Transmit Path Operations

The transmit path of the CTF sublayer passes frames from the bridge relay entity
towards the LAN instantaneously. For any frame that is a under transmission AND a
frame under reception (i.e., Cut-Through), the transmit path operations of the CTF
sublayer maintains reference to such frames and marks (7.6.3) each of these frames if
a late error has been raised by an earlier stage. Such earlier stages include the CTF
sublayer receive path (7.6.1) and other processing stages in the bridge relay entity (8).5

7.6.3. Inconsistent frame handling

Handling of inconsistent frames can increase diagnostic error counters on the receive
path (7.6.1), CTFReceptionDiscoveredErrors (9.4.1) and CTFReceptionUndiscovered-

Errors (9.4.2), as follows:

— If the frame has been marked by an upstream bridge and this mark was identified

as such, CTFReceptionDiscoveredErrors is increased.

— In all other cases, CTFReceptionUndiscoveredErrors is increased.

Marking inconsistent frames on the transmit path (7.6.2) assigns a externally visi-
ble indicator to such frames, usually at the end of serial transmission. In existing

implementations of CTF bridges, the marking mechanism varies. For example,

implementation may apply a modified FCS determined as follows:
1. Calculate a consistent FCS for the frame.

2. Modify the calculated consistent FCS in a deterministic manner. Examples:
a) Exchange bits of the FCS at known positions.
b) Invert bits of the FCS known positions.

an

c¢) Perform an XOR operation between the FCS and a known constant value.

3. Replace the frame check sequence parameter of the associated M UNITDATA .-

request invocation with the modified FCS.

Proper interpretation of a marked frames by a receiving CTF bridge requires that
the sending CTF bridge upstream is aware of the same marking mechanism. For
example, if an sending bridge marks inconsistent frames by inverting all FCS bits,
and the receiving bridge expects (FCS ® C1-F4-80-21), the receiving bridge will in-
crease CTFReceptionUndiscoveredErrors instead of CTFReceptionDiscoveredErrors

even though the frame was marked by the sending bridge.

5Truncating frames under transmission is not part of this version of this document, but would be

located in this section.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne

38

Technical Descriptions for Cut-Through Forwarding in Bridges

. 8. Bridge Relay Operations

« 8.1. Overview

7as The structure of the bridge relay entity of CTF bridges is aligned with that of an S&F
76 bridge. Additional definitions for supporting frames under reception for Cut-Through
7a7 exist primarily in the forwarding process (see also 4).

748 The structure of the forwarding process in CTF bridges, in terms of processing stages
nae passed by frames, is likewise aligned with that of S&F bridges. It comprises processing
70 stages symmetrical to those found in S&F bridges [2, 8.6 and Figure 8-12] with incor-
71 porated processing stages for FRER [4, 8.1 and Figure 8-2]'. The forwarding process
72 of a CTF bridge, additional elements in the bridge relay and indicated interactions
73 between them are shown in Figure 8.1.

!The FRER stages used in this document limit to a subset of those described in IEEE Std 802.1CB
when the FRER functions are integrated into the forwarding process, which limits the scope of
this document. The given subset is intended to provide the minimum for having stream handle
and sequence number parameters.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 39

755

757

759

760

762

Technical Descriptions for Cut-Through Forwarding in Bridges

I Bridge Port Receive |

Passive Stream Identification?
+
Sequence Decode?®
-
Active topology enforcement
-
Ingress filtering?

¥

C
C
>
C
(C Frame filtering
C
C
C
C
C
>

Reception Port | |
State

Filtering
Database

+
Egress filtering®
¥
Flow metering?
+
Individual Recovery?
-
Sequence Recovery?
-
Sequence Encode?®
¥

Queuing frames

Transmission
Port State

I A 6 S

C Queue management Queue management)
C Transmission selection)

| Bridge Port Transmit |

Notes
1: Optional - present in VLAN-aware CTF Bridges (absent in VLAN-unaware CTF Bridges).
2: Optional - present if PSFP is supported.
3: Optional - present if FRER is supported.

Figure 8.1.: Forwarding process of a CTF bridge.

The processing stages and their subsections are as follows:

1.

-

ot

© » N o

Passive Stream Identification (8.2)
Sequence Decode (8.3)

Active topology enforcement (8.4)
Ingress filtering (8.5)

Frame filtering (8.6)

Egress filtering (8.7)

Flow classification and metering (8.8)
Individual recovery (8.9)

Sequence recovery (8.10)

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne

40

Technical Descriptions for Cut-Through Forwarding in Bridges

10. Sequence encode (8.11)

11. Queuing frames (8.12), and associated additional definitions for queue manage-
ment (8.13)

12. Transmission selection (8.14)

The sections of the processing stages are written in a manner that avoids replicating
contents of the corresponding sections in the published IEEE 802.1 Standards. The
sections provide reference to the corresponding section(s) in the published standards,
followed by additional definitions for processing frames under reception. While the
emphasis is on processing frames under reception, the stages are equally capable for
processing received frames.

8.2. Passive Stream ldentification

The passive stream identification stage can determine a stream handle parameter
and associate it with a frame. The operation of this stage is as specified in IEEE Std
802.1CB [4, 6.2, 6.4, 6.5, 8.1 and Figure 8-2] with the additional definitions for frames
under reception described in the following.

Whether or not a frame under reception can be subject to passive stream identi-
fication is dependent on the associated management parameters [4, clause 9]. If it
can be precluded that the frame is not subject to passive stream identification?, the
frame is forwarded to the next processing stage (8.3) instantaneously. If this cannot
be precluded, processing of the frame stalls pending the necessary parameters of the
frame (source address, destination address, vlan identifier, msdu octets, etc.) that
are required to determine the following:

1. Whether or not one or more stream stream identification function instance
matches the frame, and

2. in case of multiple matching stream identification function instance, to the resolve
ambiguity as defined in IEEE Std 802.1CB.

The exact set of parameters required to satisfy the aforesaid conditions is dependent on
the stream identification function instances that are actually set in the stream identity
table [4, 9.1] and the parameters of the underlying stream identification functions
[4, clause 6]. If a stream identification function instance matches, a stream handle
parameter is associated to the frame before the frame is passed to the next processing
stage instantaneously.

8.3. Sequence Decode

The sequence decode stage is not present in CTF bridges without support for FRER.
The stage can extract redundancy tags® [4, 7.8 from frames, decode therein con-

2Tor example, if the stream identity table[4, 9.1] is empty.
3Consideration of tags other than R-Tag is excluded to limit the scope of this document.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 41

828

829

830

831

Technical Descriptions for Cut-Through Forwarding in Bridges

tained sequence number parameters [4, item b) in 6.1], and assign these parameters
to frames. The operation of this stage is as specified in IEEE Std 802.1CB [4, 7.6]
with the additional definitions for frames under reception described in the following.
If a frame under reception has no associated stream handle parameter (8.2), the
frame is passed to the next processing stage (8.4) instantaneously. If a frame under
reception has an associated stream handle parameter, processing stalls pending the
initial six octets in the mac_service data_unit parameter. If the first two octets
indicate an R-Tag [4, Table 7-1], the sequence number parameter is decoded from the
5th and 6th octet, the first six octets are removed from the mac_service data unit
parameter, and the frame is passed to the next processing stage instantaneously.

8.4. Active Topology Enforcement

8.4.1. Overview

The active topology enforcement stage can determine if frames from reception Ports
are submitted to learning, and determines the initial set of potential transmission
Ports for each frame. Both operations are as specified in IEEE Std 802.1Q [2, 8.6.1]
in CTF bridges, with the additions described in the following for learning (8.4.2) and
the initial set of potential transmission Ports (8.4.3) separately.

8.4.2. Learning

Learning is based on the source address (VLAN-unaware and VLAN-aware CTF
bridges) and VID (VLAN-aware CTF bridges) parameters of frames for adding dy-
namic entries in the forwarding database (FDB) as specified in IEEE Std 802.1Q |[2,
8.7]. The parameters are submitted to learning only if the following conditions are
satisfied:

1. A frame under reception associated with the parameters reached the end of
reception.

2. This frame’s FCS is consistent.
3. All conditions of an S&F bridge for using the parameters for learning are satisfied
2, 8.4 and 8.6.1].
8.4.3. Initial set of potential transmission Ports

The initial set of potential transmission Ports is determined by CTF bridges as specified
in IEEE Std 802.1Q [2, 8.6.1].

8.5. Ingress Filtering

The ingress filtering stage is not present in VLAN-unaware CTF bridges. The stage
discards frames originating from reception Ports based on per frame VID parameters,

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 42

833

835

836

856

857

858

859

860

861

863

864

Technical Descriptions for Cut-Through Forwarding in Bridges

if present. The conditions under which a frame is discarded by a CTF bridge are
identical to those specified in IEEE Std 802.1Q [2, 8.6.2]. Non-discarded frames are
passed to the next processing stage (8.6) instantaneously.

8.6. Frame Filtering

The frame filtering stage reduces the set of potential transmission Ports (8.4) associated
with a frame based on the destination address (VLAN-unaware and VLAN-aware
CTF bridges) and VID (VLAN-aware CTF bridges) parameters, entries in the FDB
and management parameters®. The operation of this stage is as specified in IEEE Std
802.1Q [2, 8.6.3] with the additional definitions for frames under reception as follows.

In VLAN-aware CTF bridges, an FDB query is performed for each frame under
reception instantaneously. In VLAN-unaware CTF bridges, processing stalls pending
a frame’s destination _address parameter before performing an FDB query for this
frame [2, 8.8.9]. Dependent on a query’s result by the FDB, processing of the frame
under reception falls back to S&F or passes the frame to the next stage instantaneously
as follows:

— Whenever the query evaluation by the FDB results in flooding (i.e., query eval-
uation hits an “ELSE Forward” branch in 8.8.9 of IEEE Std 802.1Q), processing
of the frame falls back to S&F5.

— In all other cases, a frame under reception is passed to the next processing stage
instantaneously.

8.7. Egress Filtering

The egress filtering stage is only present in VLAN-aware CTF bridges. The stage
reduces the set of potential transmission Ports (8.4) associated with a frame based on
this frame’s VID parameter. The rules under which transmission Ports are removed
from this set are identical to those specified in IEEE Std 802.1Q [2, 8.6.4].

8.8. Flow Classification and Metering

8.8.1. General

The flow classification and metering stage can can apply flow classification and me-
tering to frames that are received on a Bridge Port and have one or more potential
transmission ports. The stage is structured into multiple internal (sub)stages in CTF
bridges, identical to the structure specified in IEEE Std 802.1Q [2, 8.6.5]. The internal
stages and their relationships are shown in Figure 8.2 .

“flow hash [2, item c) in 8.6.3] is excluded to limit the scope of this document.

5This fall back is intended to reduce the cases for circulation of inconsistent frames in topological
loops, assuming that the performance benefits of CTF traffic that is subject to flooding are of
little real-world use.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 43

865

866

867

868

876

877

878

Technical Descriptions for Cut-Through Forwarding in Bridges

C Egress filtering)

GOW classification and metering A
< 1
7) 4 Per-stream classification and A
metering
(Stream filtering)
-
(Maximum SDU size filtering)
General flow classification and
metering .
(Stream gating)
¥
(Flow metering)
-
(ATS eligibility time assignment)

A2 o | /
_ [J
-

C Queuing frames)

Figure 8.2.: Flow classification and metering.

Support for frames under reception is provided by CTF bridges for the following
internal stages:

1. Stream filtering

2. Maximum SDU size filtering
3. Stream gating

4. Flow metering

Processing in CTF bridges falls back to S&F immediately if a frame under reception
reaches any other internal stage prior to being processed by this stage.

The operation of stages with support for frames under reception is described in
8.8.2, 8.8.3, 8.8.4 and 8.8.5. All of these stages process frames under reception instan-
taneously (i.e., stall-free operation).

8.8.2. Stream Filtering

The operation of stream filtering for frames under reception is as specified in IEEE
Std 802.1Q [2, 8.6.5.3].
8.8.3. Maximum SDU size filtering

The operation of maximum SDU size filtering for frames under reception is as specified
in IEEE Std 802.1Q [2, 8.6.5.3.1] with the following additional definitions for frames

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 44

892

893

894

895

897

208

209

910

912

913

914

915

Technical Descriptions for Cut-Through Forwarding in Bridges

under reception.

When a frame under reception reaches maximum SDU size filtering, an initial num-
ber of octets of this frame is already received. This number of octets is used by
maximum SDU size filtering for the decision on whether or not this frame is passed to
a subsequent processing stage or discarded. If a frame under reception already passed
frame maximum SDU size filtering and the associated maximum SDU size limit is
exceeded prior to the frame’s end of reception, a late error for that frame is indicated
for handling by subsequent processing stages in a CTF bridge.

8.8.4. Stream Gating

The operation of stream gates for frames under reception is as specified in IEEE Std
802.1Q [2, 8.6.5.4] with the following additional definitions for frames under reception.
When frame under reception reaches a stream gate, this frame is only passed to the
next processing stage if the gate is in an open state. The frame is discard otherwise
prior to being passed to the next processing stage. If a stream If a stream gate closes
prior to the end of the frame under reception, a late error for this frame is indicated
immediately for handling by subsequent processing stages in a CTF bridge.

8.8.5. Flow Metering

The operation of stream gates for frames under reception is as specified in IEEE Std
802.1Q [2, 8.6.5.5] with the following additional definitions for frames under reception.

When a frame under reception reaches flow metering, an initial number of octets
of this frame is already received. This number of octets is used by the associated
flow meter for the decision on whether or not this frame is passed to a subsequent
processing stage or discarded. If a frame under reception already passed flow metering
and the limit of the flow meter is subsequently exceeded prior to the frame’s end of
reception, a late error for this frame is indicated for handling by subsequent processing
stages in a CTF bridge.

8.9. Individual Recovery

The individual recovery stage is not present in CTF bridges without support for FRER.
If present, the stage can associate frames belonging to individual Member streams
[4, 7.4.2] with therefore configured instances of the Base recovery function [4, 7.4.3],
which then discard frames with repeating sequence number parameters (8.3) on a
per Member stream resolution. The operation of the individual recovery stage is as
specified in IEEE Std 802.1CB [4, 7.5], with the following additions for CTF bridges.
If frames under reception are associated with a Base recovery function for individual
recovery, processing falls back to S&F prior to performing individual recovery®.

6Falling back to S&F ensures that individual recovery does not falsely discard a frame with correct
sequence number parameter (and consistent FCS) after accepting a frame with incorrect but
identical sequence number (and inconsistent FCS) earlier. The same rationale applies in 8.10.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 45

917

918

919

921

922

923

924

926

928

929

931

932

933

934

935

936

938

939

9240

241

945

9246

947

948

Technical Descriptions for Cut-Through Forwarding in Bridges

8.10. Sequence Recovery

The sequence recovery stage is not present in CTF bridges without support for FRER.
If present, the stage can associate frames belonging to sets of Member streams with
therefore configured instances of the Base recovery function [4, 7.4.3], which then
remove frames with repeating sequence number parameters[4, item b) in 6.1] on a
per Member stream set resolution. The operation of the sequence recovery stage is as
specified in IEEE Std 802.1CB [4, 7.4.2], with the following additions for CTF bridges.
If frames under reception are associated with a Base recovery function for sequence
recovery, processing falls back to S&F prior to performing sequence recovery.

8.11. Sequence Encode

The sequence recovery stage is not present in CTF bridges without support for FRER.
If it is present, the stage can encode and insert R-Tags into the mac _service data unit
parameter based on the sequence number parameter associated with these frames.
The operation of the sequence encode stage for frames under reception is as specified
in IEEE Std 802.1CB [4, 7.6 and 7.8].

8.12. Queuing Frames

The queuing frames stage queues each received frame to a per-traffic class queue of
each remaining potential transmission Port associated with the frame (8.4, 8.6 and
8.7). The stage operates as specified in IEEE Std 802.1Q [2, 8.6.6] with the following
additional definitions for frames under reception.

Before a frame under reception is queued, a per-queue copy of a frame is created
before queuing and considered separately according to Algorithm 8.1 . The algorithm
determines whether or not subsequent atomic transmission (8.14 and 5.2) of frames
under reception is possible and if not, discard such frames in case of configuration
errors or fall back to S&F prior to queuing such frames.

8.13. Queue Management

The rules for removing frames from IEEE Std 802.1Q [2, 8.6.7] remain unaltered in
CTF bridges.

In addition to this, CTF bridges may remove a frame from a queue if all of the
following conditions are satisfied”:

1. The frame was queued while it was under reception.

2. A processing stage before queuing(8.12) raised a late error for that frame.

"Erroneous frames removed according to this additional rule will not become visible on the LAN
of an associated transmission Port, because such frames can be removed before being selected by
transmission selection .

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 46

950

951

952

953

955

Technical Descriptions for Cut-Through Forwarding in Bridges

Algorithm 8.1 Queuing rules for frames under reception.

IF
(the associated CTFTransmissionEnable parameter [9.2.2] is FALSE) OR
(the associated transmission selection algorithm is not strict priority [2, 8.6.8.1])
THEN
Processing falls back to S&F before queuing the frame instantaneously.
ELSE IF
(the associated CTFTransmissionEnable parameter [9.2.2] is TRUE) AND
(CTFInconsistency Condition)
THEN
The frame is discarded before queuing.
ELSE
The frame is queued instantaneously.
END IF

CTFInconsistencyCondition =
(transmission link speed of the frame > reception link speed of the frame) OR
(mac_service data_unit modification required in accordance with
ISO/IEC 11802-5, IETF RFC 1042 (1988) and IETF RFC 1390)

3. the end of reception of the frame was reached before the frame was selected for
transmission (8.14).

8.14. Transmission Selection

Transmission selection determines whether frames in per traffic class queues are avail-
able for transmission, determines transmission ordering and transmission times of
queued frames, de-queues frames for transmission and initiates transmission. Trans-
mission selection in CTF bridges is as specified in IEEE Std 802.1Q [2, 8.6.8].

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 47

956

959

9260

9261

962

9263

9264

Technical Descriptions for Cut-Through Forwarding in Bridges

9. Management Parameters

9.1. Overview

The management parameters for CTF fall into three categories:

1. Control Parameters (9.2)
2. Timing Parameters (9.3)
3. Error Counters (9.4)

The control parameters allow to (i) determine whether CTF is supported on a per Port
and per Port per Traffic Class resolution, and if CTF is supported, to (ii) enable and
disable CTF on these resolutions. These parameters are available in reception Ports
and transmission Ports. For a pair of bridge ports, frames can only be subject to the
CTF operation if CTF is supported and enabled on both Ports.

The timing parameters expose the delays experienced by frames passing from a
particular reception Port to another transmission Port. These parameters are primarily
intended for automated network and traffic configuration, for example, by a Centralized
Network Controller (CNC) using the associated mechanisms from IEEE Std 802.1Q
[2, clause 46].

The error counters expose information on frames that were subject to the CTF oper-
ation in a bridge, even though such frames have consistency errors (i.e., a frame check
sequence inconsistent with the remaining contents of that frame) during reception by
this bridge. These counters are primarily intended for manual diagnostic purposes
to support identifying erroneous links or stations, for example, by a human network
administrator.

9.2. Control Parameters

9.2.1. CTFTransmissionSupported

A Boolean read-only parameter that indicates whether CTF on transmission is sup-
ported (TRUE) or not (FALSE). There is one CTFTransmissionSupported parameter
for each traffic class of each transmission Port.

9.2.2. CTFTransmissionEnable

A Boolean parameter to enable (TRUE) and disable (FALSE) CTF on transmission.
There is one CTFTransmissionEnable parameter for each traffic class of each transmis-
sion Port. The default value of the CTFTransmissionEnable parameter is FALSE for

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 48

287

289

9290

9292

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

Technical Descriptions for Cut-Through Forwarding in Bridges

all traffic classes of all transmission Ports. It is an error if a CTFTransmissionEnable
is set to TRUE if the associated CTF Transmission Supported parameter is FALSE.

9.2.3. CTFReceptionSupported

A Boolean read-only parameter that indicates whether CTF on reception is supported
(TRUE) or not (FALSE). There is one CTFReceptionSupported parameter for each
reception Port.

9.2.4. CTFReceptionEnable

A Boolean parameter to enable (TRUE) and disable (FALSE) CTF on reception.
There is one CTFReceptionEnable parameter for each reception Port. The default
value of the CTFReceptionEnable parameter is FALSE for all reception Ports.It is an
error if a CTFReceptionEnable is set to TRUE if the associated CTFReceptionSup-
ported parameter is FALSE.

9.3. Timing Parameters

9.3.1. CTFDelayMin and CTFDelayMax

A pair of unsigned integer read-only parameters, in units of nanoseconds, describing
the delay range for frames that are subject to the CTF operation and encounter zero
delay for transmission selection [2, 8.6.8]. This occurs when the queue for the frame’s
traffic class is empty, the frame’s traffic class has permission to transmit, and the egress
Port is idle (not transmitting). There is one pair of CTFDelayMin and CTFDelayMax
parameters per reception Port per transmission Port traffic class pair.

9.4. Error Counters

9.4.1. CTFReceptionDiscoveredErrors

An integer counter, counting the number of received frames with discovered consistency
errors. There is one CTFReceptionDiscoveredErrors parameter for each reception
Port. A frame with discovered consistency errors has been identified as such by a
bridge on the upstream path from which the frame originates and marked by that
an implementation-dependent marking mechanism. The value of the counter always
increases by one

1. if
a) the upstream bridge that applied the marking,

b) all bridges on the path of that bridge to the reception Port associated with
the CTFReceptionDiscoveredErrors counter and

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 49

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

Technical Descriptions for Cut-Through Forwarding in Bridges

c¢) the receiving bridge of which the reception Port is a part of are different
instances of the same bridge implementation, and

2. the underlying marking mechanism is identical for all these instances if multiple
marking mechanisms are supported by these instances.

If either of the conditions in items 1 through 2 is unsatisfied, CTFReceptionUndiscov-
eredErrors may be increased instead of CTFReceptionDiscoveredErrors!.

9.4.2. CTFReceptionUndiscoveredErrors

An integer counter, counting the number of received frames with undiscovered con-
sistency errors. There is one CTFReceptionUndiscoveredErrors parameter for each
reception Port. This counter is increased by one if a frame with consistency errors is
received at the associated reception Port and CTFReceptionDiscoveredErrors is not
increased.

1t is assumed that there is a variety of options for implementing a frame marking mechanism.
For example, by using physical layer symbols [10, 1.121 - 1.126] or special frame check sequences
[11, p.54, 2.2.][12, p.17]. The current description in this document permits any marking mecha-
nism, but the associated error counters are only consistent in networks with homogeneous im-
plementation instances, and may be inconsistent in heterogeneous networks. However, term
(CTFReceptionDiscoveredErrors + CTFReceptionUndiscoveredErrors) on a reception Port should
be identical in several heterogeneous networks. A human network administrator may be able to
localize erroneous links or stations solely by considering this term along multiple reception Ports
across a network instead of its constituents.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 50

1031

1032

1033

Technical Descriptions for Cut-Through Forwarding in Bridges

Part III.

Cut-Through Forwarding in
Bridged Networks

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne

o1

1034

Technical Descriptions for Cut-Through Forwarding in Bridges

PLACEHOLDER, for contents on using CTF in networks [11, p.46 — p.49].

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne

52

1035

1036

Technical Descriptions for Cut-Through Forwarding in Bridges

Part V.

Appendices

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne

93

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

Technical Descriptions for Cut-Through Forwarding in Bridges

A. Interaction of the Lower Layer
Interface (LLI) with existing
Lower Layers

A.1. PLS Service Interface
A.1.1. Overview

This section summarizes how interfacing between the PLS service primitives on top of
the Reconciliation sublayer [13, clause 22, clause 35, etc.] and LLI (6.1) is possible,
similar to the interfacing of the original GSCF [8]. Interfacing between PLS service
primitives and LLI can be established by three processes that translate between the LLI
global variables (6.4) and the PLS service primitives. The processes and interactions
are shown in Figure A.1.

'” Q’ehéric DataﬁRéceive ,:f:” ‘ l;:” G,e:hé'ricDataIraynsmit ,:f:']

s ____B___ Iant_aSEatis_ T?ﬂai\aﬂ)le_ TiDita_ Lower Layer
RxDataStatus |RxDataEnable [RxData Interface (LLI)

‘ PLS Receive ‘ ‘ PLS Transmit Transmit Bit Clock

BitTick
________________________________ PLS service
interface

PLS_DATA. PLS_DATA_VALID. PLS_CARRIER. PLS_DATA.
indication indication indication request
NOTATION

——> :Aglobal variable set solely by the originating process.
— : A global variable set the originating process and reset by the receiving process.

———= : A service primitive.

Figure A.1.: Processes and interactions for interfacing between LLI and PLS service
primitives.

A.1.2. Service Primitives

The PLS_DATA indication, PLS DATA VALID.indication, PLS CARRIER.indication

and PLS DATA request service primitives are as specified in IEEE Std 802.3 [13,

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 54

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

Technical Descriptions for Cut-Through Forwarding in Bridges

clause 6] limiting on full duplex mode®.

A.1.3. Global Variables and Constants
A.1.3.1. BitTick

A global Boolean variable, used to generate a bit clock for the PLS Transmit process.

A.1.3.2. LEN FRAMEGAP
An integer constant defining the duration of the Inter-Frame Gap (IFG), in bits.

A.1.4. Global Constraints

The following constraints are introduced for the Global Constants in sections 6.3 and
A1.3:

1. PREAMBLE = 10101010 10101010 10101010 10101010 10101010 10101010 10101010
101010112

LEN_MIN = 8%64 + PREAMBLE.length
LEN MAX — 8*1500 + PREAMBLE length
LEN_FCS = 32

LEN DATA =1

LEN FRAMEGAP = 8*12

I T

A.1.5. Transmit Bit Clock process

The Transmit Bit Clock process periodically sets the BitTick variable to TRUE, where
the period equals the duration of a Bit on the physical layer.

A.1.6. PLS Transmit process

A.1.6.1. Description

The PLS Transmit process translates between global variables from the Generic Data
Transmit process (6.9) and the PLS CARRIER.indication and PLS_DATA request
service primitives (A.1.2).

A.1.6.2. State Machine Diagram

The operation of the PLS Transmit process is defined by the state machine diagram
in Figure A.2.

IThe PLS SIGNAL.indication service primitive is effectively not required in this mode [13, 6.3.2.2.2]
2Tirst bit in quotes is PREAMBLE[0], second bit in quotes is PREAMBLE[1], etc. whitespaces are
ignored.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 55

Technical Descriptions for Cut-Through Forwarding in Bridges

PLS_CARRIER.indicatio
(CARRIER_STATUS)

TxDataEnable == TRUE
&& BitTick == TRUE

BEGIN

TRANSMIT_INIT

CARRIER_STATUS = CARRIER_OFF;

ucTt

WAIT_TRANSMIT_READY

g

>

-

TxDataStatus == TRANSMITTING &&

TxDataEnable == TRUE &&

CARRIER_STATUS == CARRIER_OFF

TRANSMIT_BIT

”

if (TxData.value[0] == 0)
if (TxData.value[0] == 1)
if (TxData.end == TRUE)

PLS_DATA.request(ZERO);
PLS_DATA.request(ONE);
PLS_DATA.request(DATA_COMPLETE);

TxDataEnable = FALSE; BitTick = FALSE; cnt=0;

PLS_CARRIER.indication
(CARRIER_STATUS)

TxDataEnable == TRUE
&& BitTick == TRUE

(CARRIER_STATUS)

TxDataStatus

== IDLE

WAIT_FRAMEGAP
PLS_CARRIER.indication
- BitTick = FALSE;

cnt++;

BitTick
== TRUE

TRANSMIT_FLUSH

"

TxDataEnable = FALSE;
BitTick = FALSE;

PLS_CARRIER.indication
(CARRIER_STATUS)

cnt == LEN_FRAMEGAP

ucTt

Figure A.2.: State machine diagram of the PLS Transmit process.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne

596

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

Technical Descriptions for Cut-Through Forwarding in Bridges

A.1.6.3. Variables
A.1.6.3.1. cnt An integer variable for counting bits.

A.1.6.3.2. CARRIER_STATUS A variable holding to most recent value received by
a PLS _CARRIER.indication invocation (A.1.2).

A.1.7. PLS Receive process
A.1.7.1. Description

The PLS Receive process translates between global variables from the Generic Data
Receive process (6.6) and the PLS_CARRIER.indication and PLS_DATA request
service primitives (A.1.2).

A.1.7.2. State Machine Diagram

The operation of the PLS Receive process is defined by the state machine diagram in
Figure A.3.

A.1.7.3. Variables

A.1.7.3.1. cData A variable of type low_ data_t (6.5), used for implementing a

delay line of a single bit.

A.1.7.3.2. DATA _VALID_STATUS A variable holding to most recent value re-
ceived by a PLS_DATA _VALID.indication invocation (A.1.2).

A.1.7.3.3. INPUT _UNIT A variable holding to most recent value received by a
PLS DATA. indication invocation (A.1.2).

A.1.8. Support for Preemption

Connecting to the MAC Merge sublayer [13, clause 99] instead of the Reconciliation
sublayer for supporting preemption may be realized as shown in [8, p. 22| due to the
identical service primitives and the re-composition of atomic per-frame bits streams in
the pMAC.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 57

Technical Descriptions for Cut-Through Forwarding in Bridges

PLS_DATA_VALID.
indication(DATA_VALID_STATUS)

PLS_DATA.
indication(INPUT_UNIT)

BEGIN

RECEIVE_INIT

DATA_VALID_STATUS = DATA_NOT_VALID;
RxDataEnable = FALSE;
RxDataStatus = IDLE;

PLS_DATA_VALID.
y indication(DATA_VALID_STATUS)

RECEIVE_SEQ_START

RxDataStatus = RECEIVING;
cData.start = TRUE; cData.end = FALSE; cData.value = new bit[];

PLS_DATA.
indication(INPUT_UNIT)

RECEIVE_SEQ_FIRST BIT

if INPUT_UNIT == ZERO) append(cData.value, 0);
if INPUT_UNIT == ONE) append(cData.value, 1);

PLS_DATA.
indication(INPUT_UNIT)

RECEIVE_SEQ_BIT
RxData = cData; cData = new bit[];
RxDataEnable = TRUE;
cData.start = FALSE;
if INPUT_UNIT == ZERO) append(cData.value, 0);

if INPUT_UNIT == ONE) append(cData.value, 1);

RxDataEnable == FALSE

)/
RECEIVE_DATA_WAIT ‘

PLS_DATA_VALID.
indication(DATA_VALID_STATUS)

RECEIVE_SEQ_END

cData.end = TRUE;
RxData = cData;
RxDataEnable = TRUE;

A

PLS_DATA_VALID.
indication(DATA_VALID_STATUS)

RxDataEnable == FALSE

Figure A.3.: State machine diagram of the PLS Receive process.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Technical Descriptions for Cut-Through Forwarding in Bridges

Bibliography

1]

2]

[3]

[4]

[5]

[6]

[7]

18]

[9]

IEEE Standards Association, 2021 IEEE SA Standards Style Manual. [Online].
Available: https://mentor.ieee.org/myproject/Public/mytools/draft /styleman.
pdf

“IEEE Standard for Local and Metropolitan Area Network-Bridges and Bridged
Networks,” IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-2014) and pub-
lished amendments, pp. 1-1993, 2018.

“IEEE Standard for Local and metropolitan area networks — Media Access Con-
trol (MAC) Service Definition,” IEEE Std 802.1AC-2016 (Revision of IEEE Std
802.1AC-2012), pp. 1-52, 2017.

“IEEE Standard for Local and metropolitan area networks—Frame Replication and
Elimination for Reliability,” IEEE Std 802.1CB-2017 and published amendments,
pp. 1-102, 2017.

E. Frank Codd, “A relational model of data for large shared data banks,”
Commaunications of the ACM, vol. 13, no. 6, pp. 377-387, Jun. 1970. [Online].
Available: http://dl.acm.org/citation.cfm?id=362685

“IEEE Standard for Local and metropolitan area networks — Media Access Con-
trol (MAC) Service Definition,” IEEE Std 802.1AC-2016 (Revision of IEEE Std
802.1AC-2012), pp. 1-52, 2017.

Johannes Specht (Self; Analog Devices, Inc.; Mitsubishi Electric Corpo-
ration; Phoenix Contact GmbH & Co. KG; PROFIBUS Nutzerorganisa-
tion e.V.; Siemens AG; Texas Instruments, Inc.), An Idealistic Model
for P802.1DU. [Online|. Available: https://mentor.ieee.org/802.1/den/22/
1-22-0015-01-ICne-idealistic-model-for-p802-1du.pdf

Roger Marks (EthAirNet Associates), Generic Serial Convergence Function
(GSCF), 2022. [Online]. Available: https://mentor.ieee.org/802.1/dcn/22/
1-22-0040-02-ICne-generic-serial-convergence-function-gscf.pdf

“IEEE Standard for Information Technology-Telecommunications and Informa-
tion Exchange between Systems - Local and Metropolitan Area Networks—Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications,” IEEE Std 802.11-2020 (Revision of IEEE Std
802.11-2016), pp. 1-4379, 2021.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 59

https://mentor.ieee.org/myproject/Public/mytools/draft/styleman.pdf
https://mentor.ieee.org/myproject/Public/mytools/draft/styleman.pdf
https://mentor.ieee.org/myproject/Public/mytools/draft/styleman.pdf
http://dl.acm.org/citation.cfm?id=362685
https://mentor.ieee.org/802.1/dcn/22/1-22-0015-01-ICne-idealistic-model-for-p802-1du.pdf
https://mentor.ieee.org/802.1/dcn/22/1-22-0015-01-ICne-idealistic-model-for-p802-1du.pdf
https://mentor.ieee.org/802.1/dcn/22/1-22-0015-01-ICne-idealistic-model-for-p802-1du.pdf
https://mentor.ieee.org/802.1/dcn/22/1-22-0040-02-ICne-generic-serial-convergence-function-gscf.pdf
https://mentor.ieee.org/802.1/dcn/22/1-22-0040-02-ICne-generic-serial-convergence-function-gscf.pdf
https://mentor.ieee.org/802.1/dcn/22/1-22-0040-02-ICne-generic-serial-convergence-function-gscf.pdf

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

Technical Descriptions for Cut-Through Forwarding in Bridges

[10]

[11]

[12]

[13]

Astrit Ademaj (TTTech) and Guenter Steindl (Siemens), Cut-Through -
IEC/IEEE 60802 - V1.1, 2019. [Online]. Available: https://www.ieee802.org/1/
files/public/docs2019/60802- Ademaj-et-al- Cut Through-0919-v11.pdf

Johannes Specht, Jordon Woods, Paul Congdon, Lily Lv, Henning
Kaltheuner, Genio Kronauer and Alon Regev, IEEE 802 Tutorial:
Cut-Through Forwarding (CTF) among Ethernet networks — DCN 1-21-0037-

00-ICne, 2021. [Online]. Available: https://mentor.ieee.org/802.1/dcn/21/
1-21-0037-00-ICne-ieee-802-tutorial-cut-through-forwarding-ctf-among-ethernet-networks.
pdf

Peter Jones (Cisco), 802.8 NEA CTF: CTF concerns, 2022. [Online].
Available: https://www.ieee802.0rg/3/ad_hoc/ngrates/public/calls/22 0427/
jones nea_ 01 220427.pdf

“IEEE Standard for Ethernet,” IEEE Std 802.3-2018 (Revision of IEEE Std
802.3-2015), pp. 1-5600, 2018.

Johannes Specht, Individual Contribution, DCN 1-22-0042-12-ICne 60

https://www.ieee802.org/1/files/public/docs2019/60802-Ademaj-et-al-CutThrough-0919-v11.pdf
https://www.ieee802.org/1/files/public/docs2019/60802-Ademaj-et-al-CutThrough-0919-v11.pdf
https://www.ieee802.org/1/files/public/docs2019/60802-Ademaj-et-al-CutThrough-0919-v11.pdf
https://mentor.ieee.org/802.1/dcn/21/1-21-0037-00-ICne-ieee-802-tutorial-cut-through-forwarding-ctf-among-ethernet-networks.pdf
https://mentor.ieee.org/802.1/dcn/21/1-21-0037-00-ICne-ieee-802-tutorial-cut-through-forwarding-ctf-among-ethernet-networks.pdf
https://mentor.ieee.org/802.1/dcn/21/1-21-0037-00-ICne-ieee-802-tutorial-cut-through-forwarding-ctf-among-ethernet-networks.pdf
https://mentor.ieee.org/802.1/dcn/21/1-21-0037-00-ICne-ieee-802-tutorial-cut-through-forwarding-ctf-among-ethernet-networks.pdf
https://mentor.ieee.org/802.1/dcn/21/1-21-0037-00-ICne-ieee-802-tutorial-cut-through-forwarding-ctf-among-ethernet-networks.pdf
https://www.ieee802.org/3/ad_hoc/ngrates/public/calls/22_0427/jones_nea_01_220427.pdf
https://www.ieee802.org/3/ad_hoc/ngrates/public/calls/22_0427/jones_nea_01_220427.pdf
https://www.ieee802.org/3/ad_hoc/ngrates/public/calls/22_0427/jones_nea_01_220427.pdf

	Introduction
	Purpose
	Relationship to IEEE Standards
	Status of this Document

	Cut-Through Forwarding in Bridges
	Overview and Architecture
	Modeling Principles
	Frame Types
	Modeling of Service Primitives
	Parameter-based Modeling
	Temporal Control
	Processing Stalls
	Late errors
	Fall-backs to S&F
	Instantaneous Operations

	Generalized Serial Convergence Operations
	Overview
	Service Primitives
	M_DATA.indication and M_DATA.request
	DA
	SA
	MSDU
	FCS

	M_UNITDATA.indication and M_UNITDATA.request

	Global Constants
	PREAMBLE
	LEN_OCT
	LEN_ADDR
	LEN_FCS
	LEN_MIN
	LEN_MAX
	LEN_DATA

	Global Variables
	RxBitEnable
	RxBit
	RxBitStatus
	RxDataEnable
	RxData
	RxDataStatus
	TxBitEnable
	TxBit
	TxBitStatus
	TxDataEnable
	TxData
	TxDataStatus

	Global Functions
	append(bitArray,bit)
	insert(bitArray,index,bit)
	remove(bitArray,index)

	Generic Data Receive process
	Description
	State Machine Diagram
	Variables
	cnt
	buf
	rxDataEnd

	Generic Frame Receive process
	Description
	State Machine Diagram
	Variables
	cnt
	len
	buf
	status

	Functions
	FCSValid(FCS)

	Receive Convergence process
	Generic Data Transmit process
	State Machine Diagram
	Variables
	cData

	Generic Frame Transmit process
	Description
	State Machine Diagram
	Variables
	cnt

	Transmit Convergence process

	Bridge Port Transmit and Receive Operations
	Overview
	Bridge Port Connectivity
	Priority Signaling
	Receive path operations
	Transmit path operations

	Translations between Internal Sublayer Service (ISS) and Enhanced Internal Sublayer Service (EISS)
	Receive path operations
	Transmit path operations

	Higher Layer Compatibility
	CTF Sublayer
	Receive Path Operations
	Transmit Path Operations
	Inconsistent frame handling

	Bridge Relay Operations
	Overview
	Passive Stream Identification
	Sequence Decode
	Active Topology Enforcement
	Overview
	Learning
	Initial set of potential transmission Ports

	Ingress Filtering
	Frame Filtering
	Egress Filtering
	Flow Classification and Metering
	General
	Stream Filtering
	Maximum SDU size filtering
	Stream Gating
	Flow Metering

	Individual Recovery
	Sequence Recovery
	Sequence Encode
	Queuing Frames
	Queue Management
	Transmission Selection

	Management Parameters
	Overview
	Control Parameters
	CTFTransmissionSupported
	CTFTransmissionEnable
	CTFReceptionSupported
	CTFReceptionEnable

	Timing Parameters
	CTFDelayMin and CTFDelayMax

	Error Counters
	CTFReceptionDiscoveredErrors
	CTFReceptionUndiscoveredErrors

	Cut-Through Forwarding in Bridged Networks
	Appendices
	Interaction of the Lower Layer Interface (LLI) with existing Lower Layers
	PLS Service Interface
	Overview
	Service Primitives
	Global Variables and Constants
	BitTick
	LEN_FRAMEGAP

	Global Constraints
	Transmit Bit Clock process
	PLS Transmit process
	Description
	State Machine Diagram
	Variables

	PLS Receive process
	Description
	State Machine Diagram
	Variables

	Support for Preemption

	Bibliography

