2

Technical Descriptions for
Cut-Through Forwarding in Bridges

DCN 1-22-0042-05-1Cne

Author: Johannes Specht

September 22, 2022

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Technical Descriptions for Cut-Through Forwarding in Bridges

Contents
I. Introduction 6
1. Purpose 7
2. Relationship to IEEE Standards 8
3. Status of this Document 9
Il. Cut-Through Forwarding in Bridges 10
4. Generalized Serial Convergence Operations 11
4.1, Overview 11
4.2. Service Primitiveso L 13
42.1. M _DATA.indication and M_DATA request 13
4.2.1.1. DA . .. 13
4.2.1.2. SA . . . e 13
4.2.1.3. SDU.o 13
4.2.1.4. FCSo 13
4.2.2. M_UNITDATA. indication and M_UNITDATA request 13
4.2.3. Atomic Invocation Models oL 14
4.2.3.1. Bit-Accurate Modeling 14
4.2.3.2. Parameter-Accurate Modeling 15
4.2.3.3. Temporal Control 15
4.3. Global Constants 16
4.3.1. PREAMBLE 16
432, LEN_OCTo, 16
433. LEN_ADDR 16
434, LEN_FCS . . oo 16
4.3.5. LEN_MIN 16
43.6. LEN MAX 17
4.3.7. LEN_DATA 17
4.4. Global Variables 17
4.4.1. RxBitEnable 17
44.2. RxBit 17
4.43. RxBitStatus. 17
4.4.4. RxDataEnable 18
4.4.5. RxData o e 18

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 2

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

Technical Descriptions for Cut-Through Forwarding in Bridges

4.4.6. RxDataStatus. e 18
4.4.7. TxBitEnable 18
4.48. TxBit 18
4.49. TxBitStatus 19
4.4.10. TxDataEnable 0. 19
4.4.11. TxData o e 19
4.4.12. TxDataStatus e 19
4.5. Generic Data Receive oL oo 19
4.6. Generic Frame Receive L oo oo 20
4.6.1. Description L 20
4.6.2. State Machine Diagram 20
4.6.3. Variables L e 20
4.6.3.1. cnt ..o 20
4.6.3.2. len. 20
4.6.3.3. status 20
4.6.4. Functions e 20
4.6.4.1. append(parameter,bit) 20
4.6.4.2. FCSValid(FCS) 20
4.7. Receive Convergence oo o it 22
4.8. Generic Data Transmit 0. 22
4.9. Generic Frame Transmito 0oL 22
4.10. Transmit Convergence oo 22

5. Translation between Internal Sublayer Service (ISS) and Enhanced Inter-
nal Sublayer Service (EISS) 23
6. Bridge Relay Operation 24
7. Management Parameters 25
710 Overview oo o e e e 25
7.2. Control Parameters 25
7.2.1. CTFTransmissionSupported 25
7.2.2. CTFTransmissionEnable 25
7.2.3. CTFReceptionSupported 26
7.2.4. CTFReceptionEnable 26
7.3. Timing Parameters oo 26
7.3.1. CTFDelayMin and CTFDelayMax 26
74. Error Counters L 26
7.4.1. CTFReceptionDiscoveredErrors 26
7.4.2. CTFReceptionUndiscoveredErrors 27
I1l. Cut-Through Forwarding in Bridged Networks 28
Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 3

~

7

78

79

0

Technical Descriptions for Cut-Through Forwarding in Bridges

IV. Appendices 30
A. Interaction of the Generalized Serial Convergence Operations with exist-

ing Lower Layers 31
Bibliography 31
Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 4

81

82

83

Technical Descriptions for Cut-Through Forwarding in Bridges

List of Figures

4.1. Overview of the generalized serial convergence operations. 11
4.2, State Machine Diagram of the Generic Frame Receive Process. 21
Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 5

84

85

Technical Descriptions for Cut-Through Forwarding in Bridges

Part I.

Introduction

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne

86

87

88

89

20

91

92

Technical Descriptions for Cut-Through Forwarding in Bridges

1. Purpose

This document is an individual contribution by the author, provided for technical
discussion in pre-PAR activities of IEEE 802 (i.e., Nendica). The contents of this
document are technical descriptions for the operations of Cut-Through Forwarding
(CTF) in bridges. The intent is to provide more technical clarity, and thereby also
address the desire expressed by some individuals during the IEEE 802 Plenary Meeting
in July 2022 to a certain extent.

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 7

93

94

95

926

98

29

100

102

103

104

105

107

108

110

Technical Descriptions for Cut-Through Forwarding in Bridges

2. Relationship to IEEE Standards

This document IS NOT an IEEE Standard or an IEEE Standards draft. This allows
readers to focus on the technical contents in this document, rather than additional
aspects that are important during standards development. For example:

1. The structure of this document does not comply with the structural requirements
for such standards. For example, it does not contain mandatory clauses for IEEE
Standards [1].

2. Usage of normative keywords has no implied semantics beyond explicit descrip-
tion. For example, usage of the words shall, should or may DOES NOT imply
requirements or recommendations for conformance of an implementation.

3. This document contains references, but without distinguishing between norma-
tive and informative references.

4. This document does not contain suggestions for assigning particular contents
to vehicles (e.g., IEEE 802 Working Groups, potential amendment projects for
existing standards, or potential new standard projects). As a consequence, the
clause structure of this document is intended for readability, rather than fitting
into the clause structure of a particular Standard (i.e., which would matter for
potential amendment projects).

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 8

112

114

115

Technical Descriptions for Cut-Through Forwarding in Bridges

3. Status of this Document

This document is work-in-progress in an early stage. It contains technical and editorial
errors, omissions and simplifications. Readers discovering such issues are encouraged
for making enhancement proposals, e.g. by sending such proposals to the author by
email (johannes.specht.standards@gmail.com).

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 9

mailto:johannes.specht.standards@gmail.com

116

117

118

Technical Descriptions for Cut-Through Forwarding in Bridges

Part II.

Cut-Through Forwarding in
Bridges

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne

10

121

126

127

Technical Descriptions for Cut-Through Forwarding in Bridges

4. Generalized Serial Convergence
Operations

4.1. Overview

The generalized serial convergence operations are described by a stack of processes
that interact via global variables (see 4.4) and service primitive invocations (see 4.2).
These processes provide the translation between the Internal Sublayer Service (ISS)
and a broad range of lower layers, including (but not limited to) physical layers. Figure
4.1 provides an overview of these processes and their interaction'. The processes can

M_UNITDATA.request Internal Sublayer

M_UNITDATA.Indication Service (ISS)

Receive Convergence ‘ Transmit Convergence

M_DATA.request

M_DATA.Indication

‘ Generic Frame Receive ‘ ‘ Generic Frame Transmit ‘
TxBitEnable TxBit
RxBitStatus RxBitEnable RxBit TxBitStatus
‘ Generic Data Receive Generic Data Transmit ‘

TxDataEnable |TxData
RxDataStatus RxDataEnable [RxData TxDataStatus

Lower Layer (physical layer)

NOTATION
——> :Aglobal variable set solely by the originating process.
— : Aglobal variable set the originating process and reset by the receiving process.

——= : A service primitive.
Figure 4.1.: Overview of the generalized serial convergence operations.

be summarized as follows:

L This interaction model is inspired by clause 6 and 8.6.9 of IEEE Std 802.1Q|2].

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 11

Technical Descriptions for Cut-Through Forwarding in Bridges

128 1. A Receive Convergence process (4.7) that translates each invocation of the M_ DATA .-
120 indication service primitive (4.2.1) into a corresponding invocation of the M_ UNITDATA .-
130 indication service primitive (4.2.2).

131 2. A Generic Frame Receive process (4.6) that generates M_ DATA indication in-

132 vocations for bit sequences originating from the Generic Data Receive process of
133 at least LEN _MIN (4.3.5) bits.

134 3. A Generic Data Receive process (4.5) that translates a lower layer-dependent?
135 serial data stream into delineated homogeneous bit sequences of variable length,
136 each typically representing a frame.

137 4. A Transmit Convergence process (4.10) that translates each invocation of the
138 M_UNITDATA . request service primitive into a corresponding invocation of the
130 M _DATA request service primitive.

140 5. A Generic Frame Transmit process (4.9) that translates M_ DATA request invo-
141 cations into bit sequences for the Generic Data Transmit process.

142 6. A Generic Data Transmit process (4.8) that translates bit sequences from the
143 Generic Frame Transmit process into a lower layer-dependent serial data stream.

1aa The generalized serial convergence operations are inspired by the concepts described
s in slides by Roger Marks [3, slide 15], but follow a different modeling approach with
1as more formalized description of these functions and incorporate some of the following
147 concepts, as suggested by the author of this document during the Nendica meetings
s on and after August 18, 2022. The differences can be summarized as follows:

140 — Alignment with the state machine diagram conventions in Annex E of IEEE Std
150 802.1Q[2).

151 — Support for serial data streams from lower layers with arbitrary data word
152 length?’.

153 — Explicit modeling of atomic ISS service primitive invocations.

1sa By keeping ISS service primitive invocations atomic, the approach in this document
155 i intended to provide a higher level of compatibility with existing IEEE 802.1 Stds,
156 similar to the modeling approach via frame look-ahead of service primitive invocation-
157 s/prescient functions[4, slides 7ff.].

28uch a lower layer may be an entity on the physical layer (PHY), but the generalized receive
operations are not limited to this.

3This generalization is intended to allow a wide range of lower layers. In addition, the support for
word sizes (e.g., 8 bits, 32 bits or 64 bits) may be close to realities found in hardware implementa-
tion. It is subject to discussion whether this and other generalizations over [3] introduced by the
author are considered to be helpful.

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 12

158

166

167

168

Technical Descriptions for Cut-Through Forwarding in Bridges

4.2. Service Primitives

4.2.1. M_DATA.indication and M _ DATA.request

The M_DATA. indication service primitive passes the contents of a frame from the
Generic Frame Receive process to the Receive Convergence process. The M_DATA .-
request service primitive passes the contents of a frame from the Transmit Convergence
process to the Generic Frame Transmit process. This parameter signatures of the
service primitives are as follows?:

M DATA. indication(DA, SA, SDU, FCS)
M _DATA.request(DA, SA, SDU, FCS)

The parameters are defined as follows:

4.2.1.1. DA

An array of zero to LEN _ADDR (4.3.3) bits, containing the destination address of a
frame.

4.2.1.2. SA
An array of zero to LEN_ADDR (4.3.3) bits, containing the source address of a frame.

4.2.1.3. SDU

An array of zero or more bits, containing a service data unit of a frame. The number
of bits after complete reception of a frame is an integer multiple LEN OCT (4.3.2).

4.2.1.4. FCS

An array of zero to LEN_FCS (4.3.4) bits, containing the frame check sequence of a
frame.

4.2.2. M_UNITDATA.indication and M_UNITDATA.request

As specified in IEEE Std 802.1AC[6, 11.1], with the parameter signatures summarized
as follows:

4The parameters in this version of this document limit to those introduced in Roger Marks’ GSCF
slides [3]. Future versions may introduce more flexibility (e.g., for IEEE Std 802.11 [5, 9.2]).

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 13

183

198

199

200

Technical Descriptions for Cut-Through Forwarding in Bridges

M UNITDATA. indication(
" destination address,

source address,
mac service data unit,
priority, o o
drop eligible,
frame check sequence,
service access point identifier,
connect_ion_idaltiﬁer_

)

M_UNITDATA. request(
destination address,
source address,
mac_service data unit,
priority, drop eligible,
frame check sequence,
service access point_identifier,
connection identifier

)

4.2.3. Atomic Invocation Models
4.2.3.1. Bit-Accurate Modeling

All invocations of service primitives in this document are atomic. That is, each in-
vocation is non-dividable (see also 7.2 of IEEE Std 802.1AC[6]). Service primitive
invocations are modeled more explicitly in this document, allowing for accurate de-
scription of operations within a Bridge, while retaining atomicity. This explicit model
comprises the following;:

1. A service primitive provides two attributes®, ’start and ’end. These attributes
are used in subsequent descriptions to indicate the start and the end of the
indication, respectively.

2. The parameters of a service primitive are explicitly modeled as bit arrays.

3. The values of parameters during invocations of a service primitive are passed
according to a call-by-reference scheme.

In a series of sequential processing stages (e.g., the processes introduced in 4.1 or a
sub-process of the forwarding process in 6), this model allows later processing stages
to access contents in service primitive parameters that are incrementally added by an
earlier processing stage.

5The concept of attributes is inspired by the Very High Speed Integrated Circuits Hardware De-
scription Language, VHDL(7], which provides predefined attributes (e.g., transaction) that allow
modeling over multiple VHDL simulation cycles at the same instant of simulated time.

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 14

219

Technical Descriptions for Cut-Through Forwarding in Bridges

4.2.3.2. Parameter-Accurate Modeling

At higher levels processing stages, service primitives of frames and processing of these
frames themselves is modeled at parameter level accuracy. The purpose of this model
is to

1. provide means for compact description of temporal control (4.2.3.3) in and across
processing stages,

2. enable re-use of existing transformation rules from IEEE 802.1 Stds by reference,
and

3. avoid low level details that would not provide any value to the clarity and un-
ambiguity of descriptions.

The parameter-accurate operates at the resolution of symbolic and/or numeric pa-
rameters instead of bit arrays (4.2.3.1). A parameter is said to be complete once the
manimal information is available to unambiguously determine the parameter’s value.
The minimal information may be

1. a sequence of bits found in a frame,

2. the result of composition and/or computation across bits located at various lo-
cations in a frame,

3. based on out-of-band information, or
4. any combination of the aforesaid.

As an example, the vlan _identifier parameter of EM_UNITDATA. indication (5) in-
vocations can be derived from a subset of underlying bits of the associated SDU pa-
rameter of M DATA .indication invocations (4.2.1) that are located in a VLAN Tag
according to the specification of the Support for the EISS defined in IEEE Std 802.1Q
[2, 6.9], or originate from out-of-band information such a default value, potentially set
by management, in absence of a VLAN Tag.

Most of the data transformations from bit-contents of frames and potential out-
of-band information is already unambiguously specified in the relevant IEEE 802.1
Standards. This document omits description of already specified transformations and
instead just refers to the relevant transformations existing IEEE 802.1 Standards.

4.2.3.3. Temporal Control

Parameter-accurate modelling allows formulating temporal control in processing stages.
A processing stage (4.2.3.1) may stall further processing of a frame, including (but not
limited to) passing this frame to a subsequent processing stage, until one or more pa-
rameters are complete (4.2.3.2). Most processing stalls are implicit due to the data
dependencies already specified in IEEE 802.1 Standards (e.g., Ingress Filtering as part
of the forwarding process in IEEE Std 802.1Q[2, 8.6.2] depends on the availability of

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 15

250

251

252

253

254

259

260

Technical Descriptions for Cut-Through Forwarding in Bridges

a frame’s VID, which therefore implictly requires completion of the vlan identifier
parameter of EM_UNITDATA .indication invocations), however, explicit modeling of
processing stalls may be expressed by formulations in natural language.

Example formulations:

1. “Processing stalls on the vlan_identifier parameter.”

2. “Further execution in a MAC bridge is stalled on the destination address of
a frame prior to the forwarding database lookup of the destination ports.”

4.3. Global Constants
4.3.1. PREAMBLE

A lower layer-dependent array of zero
of each frame.

5 or more bits, containing the expected preamble

4.3.2. LEN_OCT

The integer number eight (8), indicating the number of bits per octet.

4.3.3. LEN _ADDR

An integer denoting the length of the DA and SA parameters of M DATA .indication
parameters, in bits. For example,

LEN_ADDR = 48 (4.1)

indicates an EUI-48 addresses.

4.3.4. LEN_FCS

An integer denoting the length of frame check sequence and the length FCS parameter
of M_DATA indication parameter, respectively, in bits. For example,

LEN_FCS = 32 (4.2)

indicates a four octet frame check sequence.

4.3.5. LEN_MIN

A lower layer-dependent integer, denoting the minimum length of a frame, in bits. In-
vocation of the The M DATA indication service primitive starts once the Generic

6Including length zero permits to support lower layers that do not expose a preamble to the Generic
Data Receive process.

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 16

262

280

281

283

284

285

286

288

Technical Descriptions for Cut-Through Forwarding in Bridges

Frame Receive process received the first LEN MIN bits of a frame. Values for
LEN MIN with

LEN MIN > PREAMBLE.length + LEN FCS (4.3)

are valid.

4.3.6. LEN _MAX

A lower layer-dependent integer, denoting the maximum length of a frame, in bits.
Invocation of the The M_DATA indication service primitive ends at latest once the
Generic Frame Receive process received at most LEN MAX bits of a frame. Values
for LEN MIN with

LEN MAX > PREAMBLE. length + 2LEN _ADDR + LEN_FCS (4.4)

are valid.

4.3.7. LEN _DATA
A lower layer-dependent integer, denoting the width of the RxData variable, in bits.

4.4. Global Variables
4.4.1. RxBitEnable

A Boolean variable, set by the Generic Data Receive process and reset by the Generic
Frame Receive process, which indicates an update of the RxBit variable, RxBitStatus
variable, or both.

4.4.2. RxBit

A bit variable used to pass a single bit value to the Generic Frame Receive process.

4.4.3. RxBitStatus

An enumeration variable used to pass the receive status from the Generic Data Receive
process to the Generic Frame Receive process. The valid enumeration literals are as
follows:

RECEIVING Indicates that the Generic Data Receive process received data from lower
layers in a serial stream without knowledge of the remaining length of the overall
data stream.

TRAILER Indicates that the Generic Data Receive process received data from lower
layers in a serial stream with the knowledge that LEN FCS or less bits follow.

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 17

289

201

292

203

294

296

297

209

300

301

302

304

305

307

308

310

311

312

Technical Descriptions for Cut-Through Forwarding in Bridges

Algorithm 4.1 Definition of data type low_data_t.

typedef struct {
Boolean start;
Boolean end;
bit [] value;
} low_data_t;

4.4.4. RxDataEnable

A Boolean variable, set by a lower layer and reset by the Generic Data Receive process,
which indicates an update of the RxData variable, RxDataStatus variable, or both.
4.4.5. RxData

A variable of composite data type low_ data_ t, used for serially passing data words of
frames from a lower layer to the Generic Data Receive process. Type low data_t is
defined in Listing 4.1. The semantics of the constituent parameters is as follows:

start Indicates whether the data word is the first word of a frame (TRUE) or not
(FALSE).

end Indicates whether the data word is the last word of a frame (TRUE) or not
(FALSE).

value A lower layer-dependent non-empty array of up to LEN DATA (4.3.7) bits,
containing a data word of a frame. An array length less than LEN DATA bits
is only valid if eof is TRUE.

4.4.6. RxDataStatus

An enumeration variable used to pass the receive status from lower layers to the Generic
Data Receive process. The valid enumeration literals are as follows:

RECEIVING Indicates that data stream reception from lower layers is active.

IDLE Indicates that data stream reception from lower layers is not active.

4.4.7. TxBitEnable

A Boolean variable, set by the Generic Frame Transmit process and reset by the
Generic Data Transmit process, which indicates an update of the TxBit variable.

4.4.8. TxBit

A bit variable used to pass a single bit value to the Generic Data Transmit process.

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 18

313

315

316

318

319

320

321

323

324

326

327

328

329

331

332

334

335

336

337

338

339

340

341

Technical Descriptions for Cut-Through Forwarding in Bridges

4.4.9. TxBitStatus

An enumeration variable that establishes a back pressure mechanism from the Generic
Data Transmit process to the Generic Frame Transmit process. The valid enumeration
literals are as follows:

READY Indicates that the Generic Data Transmit process can accept one or more
bit(s) from the Generic Frame Transmit process.

BUSY Indicates that the Generic Data Transmit process cannot accept bits from the
Generic Frame Transmit process.

4.4.10. TxDataEnable

A Boolean variable, set by the Generic Data Transmit process a lower layer and reset
by the lower layer, which indicates an update of the TxData variable.

4.4.11. TxData

A variable of composite datatype low data t (4.1), used for serially passing data
words of frames from the Generic Data Transmit process to a lower layer.

4.4.12. TxDataStatus

An enumeration variable that establishes a back pressure mechanism from the lower
layer to the Generic Data Transmit process. The valid enumeration literals are as
follows:

READY Indicates that a lower layer can accept one or more bit(s) from the Generic
Data Transmit process.

BUSY Indicates that a lower layer cannot accept bits from the Generic Data Transmit
process.

4.5. Generic Data Receive

The Generic Data Receive process translates a lower layer-dependent” serial data
stream into a uniform bit stream. In addition, it realizes the following functions:

— Determine the position in the serial data stream of a frame at which the frame
check sequence begins (delay line modeling).

— Truncate excess bits to satisfy the frame length requirements implied by the
parameter definition of the M DATA.indication primitive (4.2.1).

7Such a lower layer may be an entity on the physical layer (PHY), but the generalized receive
operations are not limited to this.

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 19

342

Technical Descriptions for Cut-Through Forwarding in Bridges

4.6. Generic Frame Receive

4.6.1. Description

The Generic Frame Receive process transforms a serial bit streams of frames from the
Generic Data Receive process into invocations of the M DATA indication primitive.
4.6.2. State Machine Diagram

The operation of the Generic Frame Receive process is specified by the state machine
diagram in Figure 4.2 | using the variables and functions defined in subsequent sub-
clauses.

4.6.3. Variables

4.6.3.1. cnt

An integer counter variable, used to count the number of bits in the current parameter
of the frame.

4.6.3.2. len

An integer variable holding the actual length of a frame under reception, in bits.

4.6.3.3. status

An enumeration variable holding the current status of the Generic Frame Receive
process. The valid enumeration literals are as follows:

Ok Indicates that no error has been discovered prior or during frame reception.
FrameToolLong Indicates that a frame under reception exceeded LEN MAX bits.
FCSInvalid Indicates inconsistency between the FCS parameter an the remaining pa-

rameters of a frame under reception.

4.6.4. Functions

4.6.4.1. append(parameter,bit)

The append function appends a given bit at the end of a particular parameter of an
M _DATA. indication service primitive.

4.6.4.2. FCSValid(FCS)

The FCSValid function determines if the FCS parameter consistent with the remaining
parameters of the M_ DATA .indication service primitive (TRUE) or not (FALSE).

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 20

Technical Descriptions

for Cut-Through Forwarding in Bridges

A 4

BEGIN

INIT_PREAMBLE

A

cnt = 0; len = 0; status = OK;
DA =new bit[]; SA =new bit[];
MSDU =new bit([][]; FCS = new bit(];

status == Ok &&

RxBitStatus == RECEIVING &&
RxBitEnable == TRUE &&

cnt =0

N

RxBitEnable
RxBitStatus

PROCESS_PREAMBLE

if (RxBit |= PREAMBLE[cnt]) status = Preamblelnvalid;
cnt = (cnt + 1) % PREAMBLE.length;

status I= Ok

RxBitEnable = FALSE;

status == Ok && RxBitStatus == TRAILER

&& RxBitEnabl

e == TRUE

status == Ok && RxBitStatus == RECEIVING
&& RxBitEnable == TRUE && cnt == 0

status == Ok &&

PROCESS_DA

RxBitStatus == RECEIVING &&
RxBitEnable == TRUE &&
cnt =0

i

append(DA,RxBit);
cnt = (cnt + 1) % LEN_ADDR;

status != Ok

len++; RxBitEnable = FALSE;
if (len == LEN_MIN) M_DATA.indication(DA,SA,MSDU, FCS)‘start;

status == Ok && RxBitStatus == TRAILER

&& RxBitEnable == TRUE &

status == Ok && RxBitStatus == RECEIVING

& cnt == && RxBitEnable == TRUE && cnt ==

status == Ok &&

PROCESS_SA

RxBitStatus == RECEIVING &&
RxBitEnable == TRUE &&
cnt1=0

N

status == Ok && RxBitStatus == TRAILER|

&8& RxBitEnable == TRUE &

append(SA,RxBit);

cnt = (cnt + 1) % LEN_ADDR;

len++; RxBitEnable = FALSE;

if (len == LEN_MIN) M_DATA.indication(DA,SA,MSDU,FCS)‘start;
status == Ok && RxBitStatus == RECEIVING

& cnt == & & RxBitEnable == TRUE && cnt ==

PROCESS_MSDU

status == Ok &&

RxBitStatus == RECEIVING &&
RxBitEnable == TRUE &&

cnt =0

N

append(MSDU,RxBit);
cnt=cnt+1;
len++; RxBitEnable = FALSE;

status == Ok &&
RxBitStatus == TRAILER &&
RxBitEnable == TRUE &&
cnt!=0

i

status == Ok

status != Ok

if (len == LEN_MIN) {

M_DATA.indication(DA,SA,MSDU,FCS)‘start;
}else if (len+LEN_FCS == LEN_MAX) {

status = FrameToolong;
}

status == Ok && RxBitStatus == TRAILER
&& RxBitEnable == TRUE
Ty
[INIT_TRAILER status |= Ok
‘cnt =0;
ucT
PROCESS_TRAILER

append(FCS,RxBit);
cnt=cnt+1;
len++; RxBitEnable = FALSE;
if (len == LEN_MIN) { status != Ok

M_DATA.indication(DA,SA,MSDU,FCS)‘start;
}Yelse if (len == LEN_MAX) {

status = FrameToolong;
}

cnt == LEN_FCS
FINISH_FRAME

if (IFCSValid(FCS)) { "

status = FCSInvalid; status 1= Ok

else {

M_DATA.indication(DA,SA,MSDU,FCS)‘end;
}

YYYVYYVYYY

status != Ok

uct

ABORT_OR_ERROR

if (MIN_LEN <= len <= MAX_LEN) {
M_DATA.
indication(DA,SA,MSDU,FCS)‘end;
}

// Error Handling

Figure 4.2.: State Machine Diagram of the Generic Frame Receive Process.

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne

370

380

382

383

384

Technical Descriptions for Cut-Through Forwarding in Bridges

4.7. Receive Convergence

The Receive Convergence Process implements the translation of M DATA .indication
invocations to M_ UNITDATA .indication invocations. The supported translations are
lower layer-dependent and include, but are not limited to, those specified in clause 13
of IEEE Std 802.1ACJ6].

Each M _DATA indication invocation results in an associated M_UNITDATA -
indication invocation. During the translation, the M UNITDATA indication param-
eters are extracted from the M_DATA. indication parameters according to the rules
defined for the underlying lower layer.

4.8. Generic Data Transmit

PLACEHOLDER, for descriptions symmetrical to 4.5.

4.9. Generic Frame Transmit

PLACEHOLDER, for descriptions symmetrical to 4.6.

4.10. Transmit Convergence

PLACEHOLDER, for descriptions symmetrical to 4.7.

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 22

385

387

389

391

392

393

394

396

397

Technical Descriptions for Cut-Through Forwarding in Bridges

5. Translation between Internal
Sublayer Service (ISS) and
Enhanced Internal Sublayer
Service (EISS)

Data translation from service primitive invocations of the ISS and service primitive
invocations of the EISS follows the associated rules specified in IEEE Std 802.1Q
[2, 6.9]. The temporal behavior (4.2.3.3) between ISS and EISS service primitive
invocations is as follows:

1. For EM_UNITDATA indication invocations, EM UNITDATA indication’start
and EM UNITDATA .indication’end follow instantaneously after M UNITDATA .-
indication’start and M UNITDATA.indication’end, respectively.

2. For EM_UNITDATA request invocations, M UNITDATA request’start and M UNITDATA .-
request’end follow instantaneously after EM _UNITDATA. indication’start and
EM _UNITDATA . .indication’end, respectively.

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 23

399

400

Technical Descriptions for Cut-Through Forwarding in Bridges

6. Bridge Relay Operation

PLACEHOLDER, for describing the differences of the Bridge Relay operation as pre-
sented earlier by the author [8, p.52ff.][9, p.10f.].

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 24

402

Technical Descriptions for Cut-Through Forwarding in Bridges

7. Management Parameters

7.1. Overview

The management parameters for CTF fall into three categories:

1. Control Parameters (7.2)
2. Timing Parameters (7.3)
3. Error Counters (7.4)

The control parameters allow to (i) determine whether CTF is supported on a per Port
and per Port per Traffic Class resolution, and if CTF is supported, to (ii) enable and
disable CTF on these resolutions. These parameters are available in reception Ports
and transmission Ports. For a pair of bridge ports, frames can only be subject to the
CTF operation if CTF is supported and enabled on both Ports.

The timing parameters expose the delays experienced by frames passing from a
particular reception Port to another transmission Port. These parameters are primarily
intended for automated network and traffic configuration, for example, by a Centralized
Network Controller (CNC) using the associated mechanisms from IEEE Std 802.1Q
[2, clause 46].

The error counters expose information on frames that were subject to the CTF oper-
ation in a bridge, even though such frames have consistency errors (i.e., a frame check
sequence inconsistent with the remaining contents of that frame) during reception by
this bridge. These counters are primarily intended for manual diagnostic purposes
to support identifying erroneous links or stations, for example, by a human network
administrator.

7.2. Control Parameters

7.2.1. CTFTransmissionSupported

A Boolean read-only parameter that indicates whether CTF on transmission is sup-
ported (TRUE) or not (FALSE). There is one CTFTransmissionSupported parameter
for each traffic class of each transmission Port.

7.2.2. CTFTransmissionEnable

A Boolean parameter to enable (TRUE) and disable (FALSE) CTF on transmission.
There is one CTFTransmissionEnable parameter for each traffic class of each transmis-
sion Port. The default value of the CTFTransmissionEnable parameter is FALSE for

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 25

453

Technical Descriptions for Cut-Through Forwarding in Bridges

all traffic classes of all transmission Ports. It is an error if a CTFTransmissionEnable
is set to TRUE if the associated CTF Transmission Supported parameter is FALSE.

7.2.3. CTFReceptionSupported

A Boolean read-only parameter that indicates whether CTF on reception is supported
(TRUE) or not (FALSE). There is one CTFReceptionSupported parameter for each
reception Port.

7.2.4. CTFReceptionEnable

A Boolean parameter to enable (TRUE) and disable (FALSE) CTF on reception.
There is one CTFReceptionEnable parameter for each reception Port. The default
value of the CTFReceptionEnable parameter is FALSE for all reception Ports.It is an
error if a CTFReceptionEnable is set to TRUE if the associated CTFReceptionSup-
ported parameter is FALSE.

7.3. Timing Parameters

7.3.1. CTFDelayMin and CTFDelayMax

A pair of unsigned integer read-only parameters, in units of nanoseconds, describing
the delay range for frames that are subject to the CTF operation and encounter zero
delay for transmission selection [2, 8.6.8]. This occurs when the queue for the frame’s
traffic class is empty, the frame’s traffic class has permission to transmit, and the egress
Port is idle (not transmitting). There is one pair of CTFDelayMin and CTFDelayMax
parameters per reception Port per transmission Port traffic class pair.

7.4. Error Counters

7.4.1. CTFReceptionDiscoveredErrors

An integer counter, counting the number of received frames with discovered consistency
errors. There is one CTFReceptionDiscoveredErrors parameter for each reception
Port. A frame with discovered consistency errors has been identified as such by a
bridge on the upstream path from which the frame originates and marked by that
an implementation-dependent marking mechanism. The value of the counter always
increases by one

1. if
a) the upstream bridge that applied the marking,

b) all bridges on the path of that bridge to the reception Port associated with
the CTFReceptionDiscoveredErrors counter and

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 26

465

467

468

470

471

Technical Descriptions for Cut-Through Forwarding in Bridges

c¢) the receiving bridge of which the reception Port is a part of are different
instances of the same bridge implementation, and

2. the underlying marking mechanism is identical for all these instances if multiple
marking mechanisms are supported by these instances.

If either of the conditions in items 1 through 2 is unsatisfied, CTFReceptionUndiscov-
eredErrors may be increased instead of CTFReceptionDiscoveredErrors!.

7.4.2. CTFReceptionUndiscoveredErrors

An integer counter, counting the number of received frames with undiscovered con-
sistency errors. There is one CTFReceptionUndiscoveredErrors parameter for each
reception Port. This counter is increased by one if a frame with consistency errors is
received at the associated reception Port and CTFReceptionDiscoveredErrors is not
increased.

1t is assumed that there is a variety of options for implementing a frame marking mechanism.
For example, by using physical layer symbols [10, 1.121 - 1.126] or special frame check sequences
[8, p.54, 2.2.][11, p.17]. The current description in this document permits any marking mecha-
nism, but the associated error counters are only consistent in networks with homogeneous im-
plementation instances, and may be inconsistent in heterogenoues networks. However, term
(CTFReceptionDiscoveredErrors + CTFReceptionUndiscoveredErrors) on a reception Port should
be identical in several heterogeneous networks. A human network administrator may be able to
localize erroneous links or stations solely by considering this term along multiple reception Ports
across a network instead of its constituents.

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 27

a77

478

479

Technical Descriptions for Cut-Through Forwarding in Bridges

Part III.

Cut-Through Forwarding in
Bridged Networks

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne

28

480

Technical Descriptions for Cut-Through Forwarding in Bridges

PLACEHOLDER, for contents on using CTF in networks [8, p.46 — p.49].

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne

29

481

Technical Descriptions for Cut-Through Forwarding in Bridges

Part V.

Appendices

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne

30

483

484

485

486

487

Technical Descriptions for Cut-Through Forwarding in Bridges

A. Interaction of the Generalized
Serial Convergence Operations
with existing Lower Layers

PLACEHOLDER, for describing the relationship Generalized Serial Convergence (4)

lower layer interface and existing lower layers.

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne

31

488

Technical Descriptions for Cut-Through Forwarding in Bridges

Bibliography

[1] IEEE Standards Association, 2021 IEEE SA Standards Style Manual. [Online].
Available: https://mentor.ieee.org/myproject/Public/mytools/draft /styleman.
pdf

[2] “IEEE Standard for Local and Metropolitan Area Network-Bridges and Bridged
Networks,” IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-2014), pp. 1-
1993, 2018.

[3] Roger Marks (EthAirNet Associates), Generic Serial Convergence Function
(GSCF), 2022. [Online]. Available: https://mentor.ieee.org/802.1/dcn/22/
1-22-0040-02-ICne-generic-serial-convergence-function-gscf.pdf

[4] Johannes Specht (Self; Analog Devices, Inc.; Mitsubishi Electric Corporation;
Phoenix Contact GmbH & Co. KG; PROFIBUS Nutzerorganisation e.V.; Siemens
AG; Texas Instruments, Inc.), CTF - Considerations on Modelling, Compatibility
and Locations. [Online]. Available: https://mentor.icee.org/802.1/dcn/22/
1-22-0021-04-ICne-ctf-considerations-on-modelling-compatibility-and-locations.
pdf

[5] “IEEE Standard for Information Technology—Telecommunications and Informa-
tion Exchange between Systems - Local and Metropolitan Area Networks—Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications,” IEEE Std 802.11-2020 (Revision of IEEE Std
802.11-2016), pp. 1-4379, 2021

[6] “IEEE Standard for Local and metropolitan area networks — Media Access Con-
trol (MAC) Service Definition,” IEEE Std 802.1AC-2016 (Revision of IEEE Std
802.1AC-2012), pp. 1-52, 2017

[7] “IEEE Standard for Local and metropolitan area networks — Media Access Con-
trol (MAC) Service Definition,” IEEE Std 802.1AC-2016 (Revision of IEEE Std
802.1AC-2012), pp. 1-52, 2017.

[8] Johannes Specht, Jordon Woods, Paul Congdon, Lily Lv, Henning
Kaltheuner, Genio Kronauer and Alon Regev, IEEE 802 Tutorial:
Cut-Through Forwarding (CTF) among Ethernet networks — DCN 1-21-0037-
00-ICne, 2021. [Online]. Available: https://mentor.ieee.org/802.1/dcn/21/
1-21-0037-00-ICne-ieee-802-tutorial-cut-through-forwarding-ctf-among-ethernet-networks.
pdf

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 32

https://mentor.ieee.org/myproject/Public/mytools/draft/styleman.pdf
https://mentor.ieee.org/myproject/Public/mytools/draft/styleman.pdf
https://mentor.ieee.org/myproject/Public/mytools/draft/styleman.pdf
https://mentor.ieee.org/802.1/dcn/22/1-22-0040-02-ICne-generic-serial-convergence-function-gscf.pdf
https://mentor.ieee.org/802.1/dcn/22/1-22-0040-02-ICne-generic-serial-convergence-function-gscf.pdf
https://mentor.ieee.org/802.1/dcn/22/1-22-0040-02-ICne-generic-serial-convergence-function-gscf.pdf
https://mentor.ieee.org/802.1/dcn/22/1-22-0021-04-ICne-ctf-considerations-on-modelling-compatibility-and-locations.pdf
https://mentor.ieee.org/802.1/dcn/22/1-22-0021-04-ICne-ctf-considerations-on-modelling-compatibility-and-locations.pdf
https://mentor.ieee.org/802.1/dcn/22/1-22-0021-04-ICne-ctf-considerations-on-modelling-compatibility-and-locations.pdf
https://mentor.ieee.org/802.1/dcn/22/1-22-0021-04-ICne-ctf-considerations-on-modelling-compatibility-and-locations.pdf
https://mentor.ieee.org/802.1/dcn/22/1-22-0021-04-ICne-ctf-considerations-on-modelling-compatibility-and-locations.pdf
https://mentor.ieee.org/802.1/dcn/21/1-21-0037-00-ICne-ieee-802-tutorial-cut-through-forwarding-ctf-among-ethernet-networks.pdf
https://mentor.ieee.org/802.1/dcn/21/1-21-0037-00-ICne-ieee-802-tutorial-cut-through-forwarding-ctf-among-ethernet-networks.pdf
https://mentor.ieee.org/802.1/dcn/21/1-21-0037-00-ICne-ieee-802-tutorial-cut-through-forwarding-ctf-among-ethernet-networks.pdf
https://mentor.ieee.org/802.1/dcn/21/1-21-0037-00-ICne-ieee-802-tutorial-cut-through-forwarding-ctf-among-ethernet-networks.pdf
https://mentor.ieee.org/802.1/dcn/21/1-21-0037-00-ICne-ieee-802-tutorial-cut-through-forwarding-ctf-among-ethernet-networks.pdf

Technical Descriptions for Cut-Through Forwarding in Bridges

s21 [9] Johannes Specht (Self; Analog Devices, Inc.; Mitsubishi Electric Corporation;

522 Phoenix Contact GmbH & Co. KG; PROFIBUS Nutzerorganisation e.V.;
523 Siemens AG; Texas Instruments, Inc.), Cut-Through Forwarding (CTF):
524 Towards an IEEE 802.1 Standard, 2021. [Online]. Available: https:
525 //www.ieee802.org/1/files/public/docs2021 /new-specht-ctf-802-1-1121-v01.pdf
s26 [10] Astrit Ademaj (TTTech) and Guenter Steindl (Siemens), Cut-Through -
s27 IEC/IEEE 60802 — V1.1, 2019. [Online]. Available: https://www.ieee802.0org/1/
528 files/public/docs2019/60802- Ademaj-et-al- Cut Through-0919-v11.pdf

s20 [11] Peter Jones (Cisco), 802.3 NEA CTF: CTF concerns, 2022. [Online].
530 Available: https://www.ieee802.org/3/ad_hoc/ngrates/public/calls/22 0427/
531 jones mnea 01 220427.pdf

Johannes Specht, Individual Contribution, DCN 1-22-0042-05-ICne 33

https://www.ieee802.org/1/files/public/docs2021/new-specht-ctf-802-1-1121-v01.pdf
https://www.ieee802.org/1/files/public/docs2021/new-specht-ctf-802-1-1121-v01.pdf
https://www.ieee802.org/1/files/public/docs2021/new-specht-ctf-802-1-1121-v01.pdf
https://www.ieee802.org/1/files/public/docs2019/60802-Ademaj-et-al-CutThrough-0919-v11.pdf
https://www.ieee802.org/1/files/public/docs2019/60802-Ademaj-et-al-CutThrough-0919-v11.pdf
https://www.ieee802.org/1/files/public/docs2019/60802-Ademaj-et-al-CutThrough-0919-v11.pdf
https://www.ieee802.org/3/ad_hoc/ngrates/public/calls/22_0427/jones_nea_01_220427.pdf
https://www.ieee802.org/3/ad_hoc/ngrates/public/calls/22_0427/jones_nea_01_220427.pdf
https://www.ieee802.org/3/ad_hoc/ngrates/public/calls/22_0427/jones_nea_01_220427.pdf

	Introduction
	Purpose
	Relationship to IEEE Standards
	Status of this Document

	Cut-Through Forwarding in Bridges
	Generalized Serial Convergence Operations
	Overview
	Service Primitives
	M_DATA.indication and M_DATA.request
	DA
	SA
	SDU
	FCS

	M_UNITDATA.indication and M_UNITDATA.request
	Atomic Invocation Models
	Bit-Accurate Modeling
	Parameter-Accurate Modeling
	Temporal Control

	Global Constants
	PREAMBLE
	LEN_OCT
	LEN_ADDR
	LEN_FCS
	LEN_MIN
	LEN_MAX
	LEN_DATA

	Global Variables
	RxBitEnable
	RxBit
	RxBitStatus
	RxDataEnable
	RxData
	RxDataStatus
	TxBitEnable
	TxBit
	TxBitStatus
	TxDataEnable
	TxData
	TxDataStatus

	Generic Data Receive
	Generic Frame Receive
	Description
	State Machine Diagram
	Variables
	cnt
	len
	status

	Functions
	append(parameter,bit)
	FCSValid(FCS)

	Receive Convergence
	Generic Data Transmit
	Generic Frame Transmit
	Transmit Convergence

	Translation between Internal Sublayer Service (ISS) and Enhanced Internal Sublayer Service (EISS)
	Bridge Relay Operation
	Management Parameters
	Overview
	Control Parameters
	CTFTransmissionSupported
	CTFTransmissionEnable
	CTFReceptionSupported
	CTFReceptionEnable

	Timing Parameters
	CTFDelayMin and CTFDelayMax

	Error Counters
	CTFReceptionDiscoveredErrors
	CTFReceptionUndiscoveredErrors

	Cut-Through Forwarding in Bridged Networks
	Appendices
	Interaction of the Generalized Serial Convergence Operations with existing Lower Layers
	Bibliography

