
Roger Marks

(EthAirNet Associates)

roger@ethair.net

 
+1 802 capable

2022-08-31

Mentor DCN 802.1-22-0041-02-ICne

Generic Serial Convergence
Function (GSCF)

Copyright policy note: “Q: Do I need permission if I am using IEEE standards for comparison
or discussion only? A: IEEE SA Working Groups are permitted to present (i.e., display during
a Working Group meeting) and review information from an approved IEEE standard.”

• https://standards.ieee.org/faqs/copyrights/working-group-and-activity-chairs/

Rev. 1: 2022-08-31: added Slides 21-22; minor changes to Slides 23 & 27

Rev. 1: 2022-08-24: changes to Slide 17-22; new Slide 23; other minor changes

Rev. 0: 2022-08-17

2

See also
• Ambiguity in the MAC Service

▫ Roger Marks, 2022-06-15

• CSD Compatibility Criterion for Cut-Through
Forwarding

▫ Roger Marks, 2022-06-22

3

802.3 NEA on CTF
• IEEE 802.3 NEA Conclusion from the joint NEA / 802.1

Nendica meetings on cut-through forwarding (CTF).

▫ The IEEE 802.3 Ethernet Media Access Control (MAC) and

MAC Client service interface specified in IEEE Std
802.3-2022 only supports store and forward operation and
is unable to support cut-through operation. To provide cut-
through capability, a new definition of the IEEE 802.3 MAC
is required.

▫ Source: IEEE 802.3 New Ethernet Applications (NEA) Ad

Hoc Closing Report, 2022-07-15

4

802.1 on CTF
• IEEE 802.1 Conclusion from the joint NEA / 802.1

Nendica meetings on cut-through forwarding (CTF).

▫ No consensus on what supporting MAC an 802.1 Cut-

Through Forwarding standard would use and, if needed,
where to specify it.

▫ Source: Cut-Through Forwarding status update from Nendica

perspective

5

Addressing the MAC Roadblock
• Approach:

▫ Bypass the MAC roadblock by eliminating the MAC.

● This could help enable cut-through forwarding (CTF).

● Perhaps other advantages might also result.

• Presumption

▫ collision-free LAN

● support for only for full-duplex

● medium access needs no control

Media Access
Method

Independent
Functions (8.5)

Media Access Method
Specific Functions
(IEEE Std 802.n)

MAC Relay
Entity

Media Access Method
Dependent

Convergence
Functions (6.7)

LLC LLC
MAC Service

User

MAC Service
Provider

MAC Service
User

MAC Service
Provider EIS

S

MS

ISS ISS

EISS

MS

6

Architectural Model per 802.1Q

MAC Service

not MS not MS

7

Architectural Model per 802.1Q – 
interface details

Media Access
Method

Independent
Functions (8.5)

Media Access Method
Specific Functions
(IEEE Std 802.n)

MAC Relay
Entity

Media Access Method
Dependent

Convergence
Functions (6.7)

LLC LLC
MAC Service

User

MAC Service
Provider

MAC Service
User

MAC Service
Provider EIS

S

MS MS

ISS ISS

MA_UNITDATA MA_UNITDATA.

M_UNITDATA M_UNITDATA

EISS

MA_UNITDATA

MAC Service peers

Method
Independent

Functions (8.5)

Media Access Method
Specific Functions
(IEEE Std 802.n)

Media Access Method
Dependent

Convergence
Functions (6.7)

Media Access

MA_UNITDATA

MA_DATA

MA_DATA MA_DATA

MA_DATA

identical for all
convergence functions

specific to MAC typeNote: “MA_DATA” is an 802.3-specific name and used only as an example.

8

Architectural Model with GSCF

GSCF can look, to the ISS, just like every Media Access Method Dependent
Convergence Function.
802.1Q §6.15 The ISS may be supported by other technologies that provide either an IEEE 802 MAC
Service or an emulated IEEE 802 MAC Service. The technology is responsible for invoking an
M_UNITDATA.indication with appropriate parameters (IEEE Std 802.1AC) for each received frame, and
transmitting a frame in response to each M_UNITDATA.request.

Media Access
Method

Independent
Functions (8.5)

Media Access Method
Specific Functions
(IEEE Std 802.n)

MAC Relay
Entity

Media Access Method
Dependent

Convergence
Functions (6.7)

LLC LLC
MAC Service

User

MAC Service
Provider

MAC Service
User

MAC Service
Provider EIS

S

MS MS

ISS ISS
M_UNITDATA M_UNITDATA

EISS

serial
interface

Method
Independent

Functions (8.5)

Serial Link

Generic
Serial

Convergence
Function

Media Access

MA_DATA

MA_UNITDATA MA_UNITDATA.

MA_UNITDATA MA_UNITDATA
MA_DATA MA_DATA

MAC Service peers

identical for all
convergence functions

Note: “MA_DATA” is an 802.3-specific name and used only as an example. specific to MAC typegeneric

9

802.3 generic Reconciliation Sublayer
• See 802.3 §90:

▫ “Ethernet support for time

synchronization protocols”

• optional Time

Synchronization Service
Interface (TSSI)… can be
used to support protocols
that require knowledge of
packet egress and ingress
time

• (gRS) is used to denote any
IEEE 802.3 Reconciliation
Sublayer (RS) used to
interface a MAC with any
PHY supporting the
TimeSync capability

• “PLS” represents “Physical
Signaling”

TimeSync MAC
Client Client

'MAC
TS

MA_DATA.request
service interface

service interface
MA_DATA.indication

MAC Control (MACC)

MAC

MA_DATA.request service interface

MA DATA.indication

Media Access Control (MAC)

TS_RX.indication PLS_DATA.request PLS_SIGNAL.indication PLS_CARRIER.indication

TS TX.indication PLS_DATA.indication PLS_DATA_VALID.indication

PLS

service interface

generic Reconciliation Sublayer (gRS)

xMII

PHY

Figure 90-1-Relationship of the TimeSync Client, TSSI and gRS sublayer
relative to MAC and MAC Client and associated interfaces

defer transmit

(single-bit) bits incoming

(single-bit, or DATA_COMPLETE)

10

gRS to GSCF Interface: use PLS

• Specify the lower
GSCF interface to
match PLS
interface.

• Then GSCF
interfaces to gRS,
or anything
behaving the
same at PLS
interface.

TimeSync MAC
Client Client

'MAC
TS

MA_DATA.request
service interface

service interface
MA_DATA.indication

MAC Control (MACC)

MAC

MA_DATA.request service interface

MA DATA.indication

Media Access Control (MAC)

TS_RX.indication PLS_DATA.request PLS_SIGNAL.indication PLS_CARRIER.indication

TS TX.indication PLS_DATA.indication PLS_DATA_VALID.indication

PLS

service interface

generic Reconciliation Sublayer (gRS)

xMII

PHY

Figure 90-1-Relationship of the TimeSync Client, TSSI and gRS sublayer
relative to MAC and MAC Client and associated interfaces

Generic Serial Convergence Function
(GSCF)

ISS
M_UNITDATA

(single-bit, or DATA_COMPLETE) defer transmit

(single-bit) bits incoming

11

Architectural Model with GSCF & PLS

All Ethernet LANs support the PLS interface.

Other LANs might, in principle, also support “reconciliation” to PLS.

Media Access
Method

Independent
Functions (8.5)

Media Access Method
Specific Functions
(IEEE Std 802.n)

MAC Relay
Entity

Media Access Method
Dependent

Convergence
Functions (6.7)

LLC LLC
MAC Service

User

MAC Service
Provider

MAC Service
User

MAC Service
Provider EIS

S

MS MS

ISS ISS
M_UNITDATA M_UNITDATA

EISS

PLS service
interface

Method
Independent

Functions (8.5)

Generic
Serial

Convergence
Function

Media Access

MA_DATA

MA_UNITDATA MA_UNITDATA.

MA_UNITDATA MA_UNITDATA
MA_DATA MA_DATA

MAC Service peers

identical for all
convergence functions

Note: “MA_DATA” is an 802.3-specific name and used only as an example. specific to MAC typegeneric

Serial Link

12

• On the transmit
side, what CSCF
functions are
needed?

• Consider as an
example the
802.3 
full-duplex MAC  
transmit
functions.

Building a GSCF:

transmit

TransmitFrame

Transmit
ENABLE?

assemble frame

deferring on?

start transmission

transmission
done?

Done:
transmitOK

no

yes

yes

no

no

yes

Done:
transmitDisabled

a) TransmitFrame

Figure 4A–2a—Control flow summary

Note: the assembled “frame”
includes Preamble and Start
Frame Sequence. These are
in the MAC, not the PHY!

Even the interframe gap is in
the MAC! This is included in
“deferring”.

13

GSCF Transmit to LAN – schematic

transmit
enabled?*

PLS_DATA.request:
transmit next bit of

bitstring

end of
bitstring?

no

yes

busy=false

M_UNITDATA.request
(DA,SA,MSDU,FCS)

identify next
frame octet in

DA,SA,MSDU,FCS
consecutively

wait framegap

append next frame
octet to bitstring

frame
octets
done?

no

yes

mark end of bitstring

bitstring=
preamble

PLS_DATA.request:
DATA_COMPLETE

busy=true

no

yes

Fixed parameters:
• preamble
• framegap

start both

assemble frame
into bitstring

transmit
bitstring

*PLS_CARRIER.indication=
CARRIER_OFF

AND
busy=false

14

• On the receive
side, what CSCF
functions are
needed?

• Consider as an
example the
802.3 
full-duplex MAC  
receive functions.

Building a GSCF:

receive

ReceiveFrame

Receive
ENABLE?

start receiving

done
receiving?

disassemble frame

extra bits?

Done:
receiveOK

no

yes

yes

no

no

yes

Done:
receiveDisabled

frame
too small?

recognize
address?

frame
too long?

valid
sequence?

frame check

valid

field?
length/type

Done:
lengthError

Done:
frameCheckError

Done:
alignmentError

Done:
frameTooLong

yes

yes

yes

yesyes

no

nono

no

no

b) ReceiveFrame

Figure 4A–2b—Control flow summary

Note: “Frame” includes
Preamble and Start Frame
Sequence; the MAC
checks and strips these!

15

GSCF Receive from LAN – schematic

yes

bit# =
preambleLen

?

no yes

bit# = 0
MinLen=false

bit =
preamble

(bit#)?

yes

no

bit# = 0

increment
bit#

bit# = 48?

bit=
PLS_DATA.indication

no

bit# = 0

bit=
PLS_DATA.indication

MinLen=true?

done:
MinLengthInvalid

no

yes

FCS valid?
yes

FCS=last FCSsize
octets of MSDU

delete last FCSsize
octets of MSDU

done:
FCSInvalid

no

yes

increment
bit#

append bit to DA

bit# = 0

increment
bit#

bit# = 48?

bit=
PLS_DATA.indication

yes

append bit to SA

bit=
PLS_DATA.indication

yes

append bit to MSDU

bit# =
binlenmin?

yes

no MinLen=
true

no

V

V

no

V

PLS_DATA_VALID:

M_UNITDATA.indication
(DA,SA,MSDU,FCS)

V

yes

yes

yes

increment
bit#

V

V

done

done

no

no

done

no

Fixed parameters:
• preamble & preambleLen
• bitlenmin (e.g. 52*8)
• FCSsize (e.g. 4)

16

Sufficient to support CTF?
• GSCF Receive transfers frame in M_UNITDATA.indication

▫ assembles bitstring a bit at a time

▫ identifies frame fields as they are completed

● Does it matter to the standards if the indication to ISS is expressed

as a sequence of frame fields and frame field octets? Seems not.

• GSCF Transmit transfers frame in M_UNITDATA.request

▫ assembles bitstring an octet at a time

▫ transmits bits while bitstring is loaded

● Does it matter to the standards if the request to GSCF is expressed as

a sequence of octets? Seems not.

• The sequential expression of M_UNITDATA.request and

M_UNITDATA.indication appears consistent with the
relevant existing standards (i.e. 802, 802.1Q, 802.1AC).

▫ However, the sequential processes can also be formalized.

17

New GSCF/ISS Messages for CTF
• To more formally support CTF, could add primitives at the ISS/GSCF

interface:

▫ frame_on: TRUE when ISS is transferring frame octet data to GSCF

● M_UNITDATA[octet].request(byte) transfers the octet byte

● frame_on FALSE when sequence of frame octets ends

▫ M_UNITDATA[da].indication, M_UNITDATA[sa].indication, and
M_UNITDATA[msdu].indication transfer an octet byte of DA, SA, and FCS,
respectively, from GSCF to ISS, along with an octet order identifier byte#

▫ M_UNITDATA[fcs].indication transfers FCS fcs and FCS status status to ISS

● status is true for valid FCS and false for invalid FCS

Generic Serial Convergence Function
(GSCF)

ISS, updated
M_UNITDATA plus GSCF CTF functions frame_on

M_UNITDATA[octet].
request (byte)

M_UNITDATA[da].
indication

(byte#,byte)

M_UNITDATA[msdu].
indication

(byte#,byte)

M_UNITDATA[fcs].
indication
(fcs,status)

M_UNITDATA[sa].
indication

(byte#,byte)

18

GSCF Transmit with CTF – schematic

transmit
enabled?*

PLS_DATA.request:
transmit next bit of

bitstring

end of
bitstring?

no

yes

busy=false

wait framegap

bitstring=
preamble

PLS_DATA.request:
DATA_COMPLETE

busy=true

*PLS_CARRIER.indication=
CARRIER_OFF

AND
busy=false

yes

Fixed parameters:
• preamble
• framegap

start both

M_UNITDATA[byte].
request (octet)**

append octet to
bitstring

frame_on true?yes

no

M_UNITDATA.request
(DA,SA,MSDU,FCS)

complete

mark end of bitstring

assemble frame
into bitstring

transmit
bitstring

frame_on true?

yes

no

no

**accept next frame octet of
DA,SA,MSDU,FCS
consecutively

19

GSCF Receive timing
• GSCF Receive needs to delay MSDU indication by at least

FCSsize, so FCS data is not passed to ISS as MSDU data

▫ also essential if GSCF is responsible to validate FCS

• Additional delay is required GSCF is responsible to ensure a
minimum frame size.

▫ need to defer until receipt of the minimum-sized frame

▫ allows bridge to proceed without checking for runt frames

many
msdu

ind

DA SA B

da
ind

FCSsize

B B B B B B B B B B B B B B B FCS

da
ind

da
ind

da
ind

da
ind

da
ind

sa
ind

sa
ind

sa
ind

sa
ind

sa
ind

sa
ind

byte#

msdu
ind

msdu
ind

msdu
ind

msdu
ind

msdu
ind

msdu
ind

msdu
ind

msdu
ind

FCS
check

EOF

lenmin

rec#
(rec# - FCSsize)

count

offset

FCS FCS FCS FCS

20

GSCF Receive with CTF – schematic

yes

bit# =
preambleLen

?
no

yes

MinLen=false
recdone=false

bit# = 1

bit =
preamble

(bit#)?

yes

no

bit=
PLS_DATA.indication

increment bit#

Vyes

PLS_DATA_VALID:V

V

no

bit# = 1; byte# = 0

bit=
PLS_DATA.indication

yes

byte[bit#] = bit

V

increment bit#

bit# = 8
yes

increment byte#

bit# = 0

byte#

rec# = byte# – 12

≤6
≥7 &
≤12

≥13

no

stop

M_UNITDATA[sa].
indication

(byte# – 6,byte)

M_UNITDATA[da].
indication

(byte#,byte)

MinLen =
false?

byte# =
lenmin?

yes

no MinLen =
true

yes

rec[rec#]
= byte

EOF=
true

M_UNITDATA[msdu].
indication

(count, rec[count])

count=rec# &
EOF=true?

no

yes

increment count

count = 0

offset <0

FCS[offset] =
rec[count]

no

yes

FCS valid?
yes

FCS = stomp(FCS)

no

M_UNITDATA[fcs].
indication

(FCS, ‘valid’)

M_UNITDATA[fcs].
indication

(FCS, ‘invalid’)

offset <0 or
EOF=true?

no

yes

offset = count – (rec# – FCSsize)

Fixed parameters:
• preamble & preambleLen
• lenmin (e.g. 64)
• FCSsize (e.g. 4) M_UNITDATA[fcs].

indication
(<null>, ‘runt’)

21

Other M_UNITDATA Parameters
• The material about refers to the M_UNITDATA parameters as DA,

SA, MSDU, FCS.

• Per 802.1AC, this ignores other parameters: priority, drop_eligible,

service_access_point_identifier, and connection_identifier.

▫ Note: Of these, only priority is passed in MA_UNITDATA.

▫ If the Port supports frame preemption, then a value of frame

preemption status is assigned to each value of priority via a frame
preemption status table. The possible values of frame preemption
status are express or preemptible.

• In the 802.1AC specification of the Ethernet convergence function:

▫ in requests, “The priority, drop_eligible,

service_access_point_identifier, and connection_identifier parameters
are ignored”

▫ in indications, priority is the default value of the SAP (default value 0)

and drop_eligible is set to FALSE; service_access_point_identifier and
connection_identifier parameters are not specified

• In the 802.1AC specification of the 802.11 convergence function:

• drop_eligible, service_access_point_identifier, and

connection_identifier parameters are ignored in requests and null in
indications

22

802.3 MAC Merge
• Frame preemption

might work as shown.

• 802.1Q describes

how the ISS handles
the dual eMAC and
pMAC interfaces.

• 802.1Q describes
how the ISS handles
MM_CTL.request.

• Alternately, a more
complex GSCF could
encompass MAC
Merge and interface
with RS.

TimeSync
client MAC client supporting preemption

MM_CTL.request
MA_DATA.indication MA_DATA.indication

Time MAC
MA_DATA.request MA_DATA.request

Sync Merge
service service

interface interface eMAC
service interface

pMAC
service interface

Express Preemptable
Media Access Control Media Access Control

(eMAC) (pMAC)

eMAC PLS pMAC PLS

eMAC:PLS_DATA.request pMAC:PLS_DATA.request

eMAC:PLS DATA.indication pMAC:PLS_DATA.indication

eMAC:PLS_CARRIER.indication | pMAC:PLS_CARRIER.indication

eMAC:PLS_SIGNAL.indication pMAC:PLS_SIGNAL.indication

eMAC:PLS DATA VALID.indication pMAC:PLS_DATA VALID.indication

MAC Merge sublayer

RS:PLS_DATA.request

RS:PLS DATA.indication

TS_RX.indication RS:PLS_CARRIER.indication

TS TX.indication RS:PLS SIGNAL.indication

RS:PLS DATA VALID.indication

Reconciliation sublayer PLS service interface

Reconciliation Sublayer (RS)

XMII

PHY

Figure 99-2-MAC Merge sublayer service interfaces diagram

GSCFGSCF

ISS

23

Bridge Behavior
• Not all frames can be forwarded with CTF by bridge.

▫ For example, may defer due to busy egress port.

▫ In some scenarios, the bridge may be assigned to selectively cut-

through or store-and-forward frames based on specified
characteristics.

● This would need to be specified separately from GSCF.

• GSCF Receive and GSCF Transmit do not need to know how
frame is forwarded; e.g. whether forwarded in deferred.

▫ If the bridge receives

M_UNITDATA[fcs].indication(FCS, ‘invalid’) before
transmitting lenmin bits:

● Drop and stop transmission; receiver will discard frame as a runt.

▫ Otherwise, if the bridge receives
M_UNITDATA[fcs].indication(FCS, ‘invalid’) before
completing GSCF Transmit, then:

● Stop transmission but add a stomped FCS covering transmission

‣ transmitted frame will still be errored, but at least it will be shorter.

24

How Generic is GSCF?
• 802.3 needs

▫ interframe gap inserted on transmit

▫ 8 octets of preamble inserted on transit

● technically, 7 of preamble plus 1-octet start frame delimiter (SFD)

• need to separate SFD from preamble since

▫ lenmin, lenmax

▫ FCSsize

• GSCF is “Generic” to the extent that these parameters are
customized to the LAN

▫ Alternatively, a sublayer under the GSCF could be introduced.

● This would add complexity to the description.

• If translation between LLC Encoding and Length/Type
Encoding is necessary, it could be handled as an
adaptation sublayer below the GSCF

• other custom scenarios could be included

▫ e.g., exceptional bit ordering, postamble, etc.

25

GSCF is not “a MAC”
• It does not initiate or terminate the MAC service.

• It does not operate at a MAC SAP or have a MAC address.

• It is not a peer.

• It can function with a variety of MAC specs

• It does not match the functionality of any existing MAC.

▫ e.g. it does not match the 802.3 MAC spec

▫ though it includes some functions of the 802.3 MAC spec

• Its upper interface can be described by transactions that
are more granular than a frame.

• The bridge using GSCF and CTF is closer to a repeater or
hub.

▫ But the bridging function makes it a selective repeater.

26

Summary

• GSCF can be a basis for a CTF architecture

▫ may be useful without CTF

• GSCF can interwork with PLS interface

▫ already supported by every 802.3 PHY

● no amendment to 802.3 needed

▫ non-Ethernet PHYs can adapt to it also

27

Recommendations
• Future CTF project proposals could consider GSCF as a basis

of documenting feasibility

▫ Should determine whether the existing ISS M_UNITDATA primitive

specifications are compatible with using GSCF for CTF

● If not, should consider supplementing ISS with the additional primitives

based on transferring octets, DA, SA, and FCS

• Specification of GSCF could be developed as an amendment

to IEEE Std 802.1AC.

▫ That’s where the “Media Access Method Dependent Convergence

Functions” are specified.

● Although the title is “Media Access Control (MAC) Service Definition,” the

scope includes much more, including:

● ISS specification

● Media Access Method Dependent convergence functions supporting ISS

• CTF functionality at the bridge would be better specified
elsewhere.

