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Abstract 
 

Multi-CQF, an expansion of Cyclic Queuing and Forwarding (CQF, 
IEEE Std 8021Q-2018 Annex T) is presented.  Multi-CQF requires 
that all nodes run at the same frequency, but does not require that 
all output ports’ cycles be in phase.  By using three buffers or more, 
multi-CQF supports long links, as well as intentional fixed delays for 
short/long path recombination.  Running multiple instances of 
multi-CQF on one port at different cycle rates gives good latency 
and bandwidth utilization for a mix of streams with varied 
bandwidth requirements.  This expansion requires little alteration 
of IEEE 802.1Q, and like the original 2-buffer synchronized CQF, 
requires no per-hop per-stream dynamic state.  Multi-CQF is 
presented for inclusion into an amendment to IEEE Std 802.Q.  The 
determinism of multi-CQF is demonstrated, and a set of 
parameters is suggested for network management purposes.  The 
paternoster algorithm of Mick Seaman is offered as a useful 
addition to the multi-CQF algorithm. 
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1 Introduction 
 

NOTE: This document is a revision of 1-21-0059-00-ICne-multiple-cyclic-queuing-and-
forwarding. 

 
The remainder of section 1 defines the domain of interest of this paper.  Section 2 provides a 
detailed timing model for Multiple Cyclic Queuing and Forwarding (based on CQF, IEEE Std 
802.1Q-2018 Annex T).  It shows how two, three, or more buffers can be used to manage the 
allocable bandwidth and per-hop delay, and why the systems’ CQF cycles do not have to 
operate in phase.  Section 3 shows how multiple instances of CQF can be run on the same 
output port, with different cycle times, in order to efficiently serve streams with a wide range 
of bandwidth and latency requirements.  Section 4 analyzes the determinism of CQF, and 
Section 5 suggests a set of control parameters. Section  addresses miscellaneous issues related 
to multi-CQF.   Section 7, discusses how Mick Seaman’s paternoster algorithm can greatly 
improve the usefulness of a multi-CQF network. 
 
This paper assumes the reader is reasonably familiar with CQF as described in IEEE Std 802.1Q 
Annex T.  The frame timestamps used in this paper are described in IEEE Std 802.3-2018 clause 
90.  Preemption, or interspersed express traffic, is described in IEEE Std 802.3-2018 clause 99 
and IEEE Std 802.1Q-2018 clause 6.7.2.   
 
1.1 Deterministic Quality of Service 
 
TSN (and IETF DetNet) supply a Quality of Service (QoS) to a critical data flow, or “stream”.  This 
QoS is: 
 

a. An absolute upper bound on the end-to-end latency to frames belonging to the stream.  
(Bounded Latency); and 

b. A guarantee that no frames of the stream will be discarded due to a buffer being full 
when the frame arrives at an intermediate hop (Zero Congestion Loss). 

 
This QoS, which we will call the Deterministic QoS, is made possible by a promise, made by the 
source of a stream, to not exceed a contracted bandwidth and maximum frame size.  This 
guarantee allows the network to run a resource reservation procedure that dedicates resources 
to a particular stream (or sometimes, to a class of similar streams) at every hop through the 
network, before the first frame of the stream can be transmitted. 
 
1.2 Continuous streams 
 
We can divide the streams that can make use of the Deterministic QoS into two classes: 
 

• Continuous streams can be usefully characterized by a maximum frame size, and a 
maximum bandwidth. 
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• Scheduled streams transmit on a regular, repeating schedule. 
 
Note that these two categories do not encompass all possible data flows.  Bursty, irregular 
flows are (by definition) not streams, in the sense that it is difficult, in the presence of multiple 
of these flows, to guarantee Deterministic QoS except by overprovisioning and an extensive 
analysis of worst-case inter-stream interference scenarios. 
 
Scheduled streams can be handled by using IEEE Std 802.1Qbv (now IEEE Std 802.1Q-2018 
clause 8.6.8.4, Enhancements for Scheduled Traffic) to schedule traffic class  transmission in 
detail.  They are of no interest to this paper.  This paper Is concerned only with continuous 
streams. 
 
1.3 Implementation requirements 
 
1.3.1 Store-and-forward 
 
By definition, CQF is a store-and-forward technology; no buffer every has frames both being 
stored and being transmitted at the same time. So cut-through forwarding is inapplicable to 
CQF.  That does not mean that CQF and cut-through forwarding cannot be used on the same 
bridge, or even on the same port—only that we do not address the issue, here. 
 
1.3.2 Frequency synchronization 
 
The IEEE Std 802.1Q Annex T CQF assumes that every bridge has a system clock that is 
synchronized with the other bridges’ system clocks in the network, so that configuring a 
transmission time in one bridge has meaning in another bridge.  Multi-CQF does not require 
synchronization of the system clocks, but does require frequency lock.  That is, there is a 
maximum difference in the elapsed time between two events as measured by two bridges’ 
system clocks, no matter the length of that elapsed time. 
 
1.3.3 Continuous transmission 
 
Delivering the deterministic QoS using multi-CQF depends upon a transmitting port being able 
to select the correct frame to transmit according to strict priority among the CQF priority levels, 
and initiate all transmissions in that order, without introducing extra inter-frame gap time.  
Since, with CQF, no buffer has frames both arriving and being transmitting at the same instant, 
this should pose no insurmountable problems for implementors.  
 
1.4 Multi-CQF vs. CQF 
 
The differences between CQF, as defined in Annex T of IEEE Std 802.1Q-2018, and multi-CQF, as 
defined here, are: 
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a) For a given value of the cycle time TC on a given output port, Annex T provides two 
buffers, each implemented as a separate class of service queue.  Scheduled output gates 
(8.6.8.4 of IEEE Std 802.1Q-2018) are configured to enable the two queues to output 
alternately, each given time TC to drain. 

Multi-CQF allows two or more buffers per output port per cycle time.  It is not practical 
to dedicate one class of service queue for each of these buffers; there are only eight 
available.  We assume here that alterations to IEEE Std 802.1Q will be made to enable 
one class of service queue to provide any number of CQF buffers for a single cycle time 
(see new-finn-pulsed-queuing-0821-v03). 

b) Annex T assumes that one value of TC is sufficient for any given output port. 

Multi-CQF allows multiple values of TC, one for each Multi-CQF class of service.  The 
output cycles are constrained, on any given port, so that an integral, and never a 
fractional, number of shorter cycles are contained within any given longer cycle.  We will 
assume that one class of service queue serves a single value of TC. 

c) Annex T uses synchronized time so that every output port in a TSN network switches 
buffers simultaneously. 

Multi-CQF allows each bridge to perform its buffer switching at different times, subject 
to the above constraint b). 

d) Annex T uses the same cycle time and phasing for the input gates as for the output 
gates.  The input gates select which of the two output buffers on a given port stores a 
received frame. 

Multi-CQF runs the same cycle time TC for input and output gates, but adjusts the phase 
of the input gates on a port to match the phase of the frames arriving from the output 
gates of the bridge transmitting to that receiving port. 

2 CQF timing model 
 
We have two nodes, A and B.  Both are running an instance of Cyclic Queuing and Forwarding 
on each of multiple ports, more-or-less as described in IEEE Std 802.1Q-2018 Annex T.  We will 
assume that nodes A and B are frequency locked (see 1.4).  We do not assume that the output 
buffers switch in synchrony; they can be out of phase. 
 
After a gate open/close event on a particular port, node A transmits all of the frames in one 
cyclic buffer towards receiving node B, not necessarily in a single burst.  After some gap 
following the transmission of the last frame in the buffer, another gate open/close event is 
performed.  At this point, it starts transmitting the frames from the next cyclic buffer.  The gate 
open/close events in both nodes happen regularly, with the same period TC.  At the next hop, 
node B must be able to assign each received frame to a transmit buffer such that 1) frames that 
were in the same buffer in node A, and are transmitted on the same port from node B, are 
placed into the same buffer in node B; and 2) frames in different buffers in node A are placed in 
different buffers in node B. 
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Figure 1 shows an example of Cyclic Queuing and Forwarding.  Node A and Node B are 
transmitting at the same frequency, but are offset by 0.1TC, as shown by timelines 1 and 4.  In 
Figure 1, we use the following notation for time intervals: 
 
TC nominal (intended) period of the buffer-swapping cycle 
TI maximum interference from lower-priority queues, one frame or one fragment 
TV sum of the variation in output delay, link delay, clock accuracy, and timestamp accuracy 
TA the part of the cycle allocable to (reservable by) streams 
TP worst-case time taken by additional bytes if this traffic class is preemptable 
TB end-of-cycle buffer dead time optionally imposed on node A by node B 
TW wait time during which buffer is neither receiving nor transmitting frames 
TAB effective phase difference between cycle start times for input from A and output from B 
 
Following the definitions of output gates in IEEE Std 802.1Q-2018, the red ticks in timelines 1 
and 4 in Figure 1 represent the earliest possible moment at which the first bit of the destination 
address of the first frame of the cycle can be transmitted.  These ticks are ultimately driven by 
the system clock.  They are the basis for all cyclic buffer transmissions.  If Enhancements for 
Scheduled Traffic (ETS, IEEE Std 802.1Q-2018 8.6.8.4) are used for controlling the output 
buffers, the ticks are the points in time when the output gate of one queue is closed, and the 
next queue’s gate is opened.  These are the points in time as programmed into the managed 
objects that control ETS.  An implementation may need to schedule events in anticipation of the 
time specified in the managed objects in order to maximize throughput.  Note that the 
preamble of an IEEE 802.3 Ethernet frame can be transmitted before gate open event. 
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Figure 1 Reference timelines for time-based CQF

 

 
2.1 Output timeline 1 
 
Figure 1 shows an interference delay TI (the gray area) between the gate event (the red ticks in 
Figure 1) and the transmission of the first bit of the first stream frame’s destination MAC 
address.  The interference is from frames transmitted from lower-priority queues. It is equal to 
the time required for one maximum-length transmission unit over all lower-priority queues.  
That maximum transmission unit is either a maximum-length fragment, for preemptable lower-
priority queues, or the maximum-length frame, for non-preemptable queues.  The value of TI 
depends upon the configuration of lower-priority queues. 
 
It is possible that the class of service illustrated in Figure 1 is, itself, a preemptable class.  In that 
case, a higher-priority class of service can preempt transmission of frames in this class.  

T 

                       Timeline 2: 
Assigning frames to output buffer in Node B 2-buffer: discard 

3-buffer: send to buffer a 
 

T=0.3 T=1.3 

Timeline 3: 
Storing frames in output buffers in Node B 
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3-buffer: send to buffer a 
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Maximum forwarding delay 
Forwarding delay variation 

Timeline 4: 
Transmitting frames from Node B 

Slope of maximum 
forwarding delay 

TW wait 
time 
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Timeline 1: Transmitting frames from Node A 

minimum 
link delay = 1.3TC 

max interference time TI 

variation time TV 

output continues (3-buffer) 

allocable to streams TA+TP 

NODE A 

NODE B 

NODE B 

dead buffer time TB  

output continues (2-buffer) 

Effective phase 
difference TAB 
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Preempting a frame adds additional bytes to the resultant fragments, which must be accounted 
for when allocating bandwidth to a class of service.  TP represents the worst-case additional 
time required to transmit these extra bytes caused by preempting frames belonging to a CQF 
stream.  This value is always bounded.  See below, section 3.2. 
 
There can be some variation in the time from the selection of a frame for output in node A to 
the timestamp moment, when the first bit of the destination MAC address is transmitted (see 
IEEE Std 802.3-2018 clause 90).  This is called output delay variation.  The total time between 
the transmission of the first bit of the frame and the reception of that first bit at the next hop is 
called the link delay.  Depending on the medium and the length of the link, there can be 
variations in link delay.  The worst-case variation between the two node’s clocks caused by 
accumulated frequency variations, asymmetrical links, etc., causes uncertainty between the 
transmitting and receiving nodes’ clocks, and in the determination of the link delay.  The 
inaccuracy in converting between IEEE 802.3 transmit and receive timestamps and the local 
clock that drives the gate open/close events also contributes to cycle accuracy.  The worst-case 
combination of these four items, output delay variation, link delay variation, clock/frequency 
uncertainty, and timestamp conversion inaccuracies, is labeled, TV. 
 
All of the contributions to TV are lumped together at the end of the cycle, even though 
contributions to TV are made throughout the cycle. 
 
As described below (section 2.4) the next hop can impose a buffer dead time TB on this hop.  
This is a time at the end of the cycle, during which no frames can be transmitted from the cyclic 
buffer, so that the last frame of the cycle can be received earlier than the end of the cycle. 
 
It is necessary, in order to know how much data can be transmitted in one cycle, that an 
implementation be able to transmit all of the frames in a cyclic output buffer together, at line 
rate, with no interference from lower-priority queues on the same output port.  (Interference 
from higher-priority queues is described in section 3.2.)  Given that is true, then the total time 
per cycle that can be used for transmitting streams is: 
 

TA = TC – TI – TP – TB – TV. 
 
This TA is a maximum, local to a particular output port on a node.  It guarantees that the last 
frame of cycle (plus a possible preamble of the first frame of the next cycle) will be on the wire 
before the output gate closes.  All of the components of TA can be calculated by an 
implementation from its configuration and from knowledge of the implementation, except for 
TB and parts of TV.  TB is supplied by configuration, or by the node to which the output port is 
connected.  TV can be supplied either by the time sync implementation, by configuration, by 
summing the contributions of node A and node B, or by the specification of a maximum allowed 
value by a standard or an equipment purchaser. 
 
Note that TA, as defined here, includes the entire transmission time of stream data, including 
one 12-byte inter-frame gap and one 8-byte preamble for every frame.  The preamble of the 
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first frame of a cycle is counted in the previous cycle due to the way in which the output gates 
are defined in IEEE Std 802.1Q.  
 
2.2 Receive timeline 2 
 
The timeline at the receiving port is timeline 2 in Figure 1.  The red ticks represent the earliest 
possible moment that the first bit of the destination MAC address of the first frame of a cycle 
can be received.  In terms of IEEE 802.1Qci (IEEE Std 802.1Q-2018 clause 8.6.5.1 Per-stream 
Filtering and Policing), a timed input gate must open no later than this point. 
 
On timeline 2, each frame is assigned to a buffer on an output port based on the timestamp 
(IEEE Std 802.3-2018 clause 90) on the frame. 
 
A critical aspect of timeline 2 is its offset from timeline 4, the output timeline.  This offset is 
shown as TAB in Figure 1.  It is clear from the figure that TAB must be known in order to compute 
TB and TW.  TAB can be computed by 1) synchronizing the clocks of nodes A and B, and 2) 
measuring the link delay from node A to node B using PTP.  Other methods are also possible, 
e.g. that described in 1-21-0056-00-ICne-input-synchronization-for-cyclic-queueing-and-
forwarding. 
 
Once TAB is known, all of the timing relationships shown in Figure 1 can be computed.  The 
phasing of the nodes’ output buffer cycles certainly does affect the end-to-end latency of any 
stream, so that phasing must be known when the latency is computed.  The end-to-end latency 
is no longer an integer multiple of the cycle time.  It is even possible to adjust the phasing to 
favor certain paths through the network.  
 
For a node B that is connected to and receiving cyclic frames from n other nodes, we have n 
assignment problems to solve, one for each input port on node B. 
 
If a frame (belonging to a stream) is received that straddles a cycle (first bit in one cycle on 
timeline 2 of Figure 1, and end frame plus inter-frame gap plus a preamble time occurs in the 
next cycle), then either 1) some part of that frame was transmitted from node A outside the 
cycle window TC, or 2) one or more of the constants, measurements, or calculations above is 
incorrect.  Either way, the frame must be discarded or marked down to best-effort service, or 
else it can cause disruption of delivery guarantees farther along in the network. 
 
2.3 Storing frames timeline 3 
 
The timeline at the point where frames are stored into an output buffer is timeline 3 in Figure 
1.  The red ticks on timeline 3 mark the earliest point at which the first frame transmitted from 
a particular buffer could reach the output buffers (neglecting transmission time on the input 
medium).  These ticks are offset from timeline 2 by the minimum forwarding delay, required to 
forward the frame from the input port to the output queue.  The maximum forwarding delay is 
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also shown.  The forwarding delays shown in Figure 1 include the time to install the frame in 
the output buffer and for its presence to filter through to the point that it can be selected for 
output. 
 
There are two possible buffer assignment methods shown in Figure 1: the two-buffer method, 
in which the frames received from node A buffer a are assigned to buffer c in node B, and the 
three-buffer method, where those same frames are assigned to buffer a in node B.  The slope 
of the maximum forwarding delay allows us to compute the latest moment at which frames 
received from buffer a on node A can be stored into buffer c on node B.  The shaded areas just 
below timeline 2 in Figure 1 show the time windows for buffer assignment.  If two output 
buffers are used, then frames received from buffer a on node A can be assigned on input 
(timeline 2) to buffer c only as long as they are assured of being placed into buffer c before 
node B starts transmitting buffer c.  As shown, frames from buffer a can be assigned to buffer a 
(three-buffer mode) during the entire length of the cycle on timeline 2.  Time TW in Figure 1 is 
the time during which, in three-buffer mode, buffer c is holding frames, neither filling nor 
emptying.  In 3-buffer mode, the dead buffer time TB is 0, and TB, the allocable transmission 
time, encompasses both the TB (white) and TB (red) regions in Figure 1. 
 
Note that an implementation may require a minimum offset between timeline 3 and timeline 4.  
That is, a time lag may be required between the last opportunity to store a frame in a buffer, 
and the earliest time at which the first bit of a frame from that buffer can appear on the link.    
Some time could, for example, be necessary in order schedule the transmission of frames 
across multiple queues in order to ensure that the requirements of strict frame priority and 
back-to-back frame transmission (1.3.3) can be met. 
 
2.4 Calculation of TB 
 
Timeline 3 in Figure 1 shows the calculation of TB, which applies only to two-buffer mode. The 
starting point of  is the moment that the output cycle starts (the tick on timeline 4), backed up 
by the worst-case forwarding delay.  This is the last moment on timeline 3 that a frame can be 
assigned to buffer c in the example in Figure 1.  The end of TB is the end of the cycle TC, less the 
variation time TV.  In three-buffer mode, TB is zero. 
 
TB is only known to node B.  Its effect on the allocable bandwidth TA must be taken into account 
when admitting new streams.  If a network uses a peer-to-peer control structure using, e.g. IEEE 
Std 802.1Q-2018 MSRP, then the value of TB must be made available to the previous node A so 
that node A does not exceed the reduced TA. 
 
There are many ways to deal with this issue.  Here are three: 
 

1. The value of TB can be propagated backwards to the previous node, either via 
management or via an extension of the reservation protocol. 
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2. A node can compute the value of TB and decide whether to employ 2-buffer or 3-buffer 
mode, depending on how much bandwidth has been allocated, so far.  This, of course, 
can change previously-computed stream’s end-to-end latency. 
 

3. All nodes in a network can be configured with a reasonable maximum value for TB.  If a 
particular input/output port pair on a particular node computes a value for TB that 
exceeds this maximum, then 3-buffer operation is required. 

 
2.5 Transmitting frames timeline 4 
 
Depending on whether two-buffer or three-buffer mode is used, one can trade off reduced 
total available bandwidth against per-hop delay.  Timeline 4 in Figure 1 shows the two options 
for the choice of which output cycle in node B is used to transmit frames that were transmitted 
from buffer a in node A. 
 
2.6 More than 3 output buffers 
 
The discussion over Figure 1, so far, assumes that the variation in forwarding delay is small, 
relative to TC.  If this is not the case, node B can use more than 3 output buffers, and assign 
received frames to buffers whose output is scheduled far enough ahead in time to ensure that, 
in the worst case, they will arrive in the buffer before the buffer begins transmitting.  This 
works only because the buffer assignment decision is made based on time-of-arrival of the 
frame at the input port, not the time-of-arrival of the frame at the output port.  
 
In certain situations, e.g. when stream is split and traverses two paths of different lengths using 
IEEE Std 802.1CB Frame Replication and Elimination for Reliability (FRER), it can be desirable to 
purposely delay a stream’s frames in order to match the total delay for the stream along the 
two paths.  In this case, more than 3 output buffers can be allocated, and used to impose a 
delay of an arbitrary number of cycle times TC on every frame. 
 
It will be shown in section 5.1 that it is not difficult to implement CQF so that each output port 
in a node, and each output port along the path of a stream, can have a different number of 
buffers, whether 2, 3, or 50.  Not only that, but one flow can use 3 buffers on an output port, 
while another flow, which needs a path-matching delay, can use 12 buffers on the same port. 

3 Multiple CQF classes of service 
 
3.1 Multiple TC model 
 
With CQF as it is described in IEEE Std 802.1Q-2018 Annex T, we are limited to a single class of 
service (a single value of TC) and to 2-buffer operation, only.  We have already discussed 3-
buffer (or more) operation.  We will now discuss the simultaneous use of more than one value 
of TC on the same output port. 
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It can be difficult to pick a single value of TC for a network.  If the chosen value is small, then 
only a few streams can be accommodated on any one port, because all frames for all streams 
sharing a port must fit into a single TC period.  If the value chosen for TC is large, then more 
streams can be accommodated, with a wide variation in allocated bandwidth, but the larger TC 
increases the per-hop latency.  In the ideal case, of course, every stream would have a TC value 
chosen so that exactly one frame of a stream is transmitted on each cycle TC. 
 
While this is not always possible, we can apply multiple values of TC to a single output port, as 
shown in Figure 2. 

Figure 2 Multiple TC values 

h 3 
f g f 4 
d e d e d e 5 
a b c a b c a b c a b c a b c a b c a b c a b c 6 

 
In Figure 2, we have a schematic timeline. We are running four values of TC simultaneously.  The 
fastest (call it, “TC6”) runs at the highest priority (6).  TC5 is slower by a factor of 4 from TC6 in this 
example, and its buffers run at priority 5 (less important than priority 6).  TC4 is slower by a 
factor of 2 from TC5, and by a factor of 8 from TC6.  TC3 is 24 times slower than TC6.  The letters in 
Figure 2 label which buffer is output during the cycle.  There are 9 buffers a through i (buffer i is 
not shown).  In this example, priority 6 uses three buffers, because the timing is tight; the 
others use two each. 
 
We assume here that the receiver of a frame can identify the particular CQF instance (TC value) 
to which the frame belongs by inspecting the frame.  A TSN bridge could use the L2 priority of 
the field, for example.  An IP router could use the DSCP.  IEEE Std 802.1CB and IEEE Std 802.1Q 
provide for the use of other fields in the frame, e.g. IP 5-tuple. 
 
Since the total bandwidth of the link is not oversubscribed by streams, each cycle, fast high-
priority and slow low-priority, is guaranteed to be able to transmit all of its frames within the 
duration of its cycle.  For example:  If 50% of TC5 is reserved, and 30% of TC3 is reserved, then 
80% of the total bandwidth has been reserved, leaving only 20% for other streams, best effort 
traffic, and dead time.  This is shown in Figure 3, where we illustrate the timing of transmission 
of frames from three levels of CQF and the best-effort (BE) level.  Note that CQF traffic can be 
delayed within its window by interference from both higher priorities (e.g. the first priority 4 
frame) and lower priorities (e.g. the first priority 6 frame), but that it will always get out before 
the window closes, assuming that the bandwidth is not oversubscribed. 
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Figure 3 Transmission timing 

 
 
A given stream is allocated a fixed number of bits that it can transmit per cycle TCn.  A scheduler 
would typically assign each stream to the highest-numbered (fastest) CQF instance such that, at 
the stream’s bandwidth and frame size, the stream occupies some space in every buffer at that 
level.  Then, CQF will maintain one or two frames in its buffers per stream, the best possible 
latency is given that stream, and the buffer space is not wasted in unused cycles. 
 
Of course, it is the “best possible” latency only to a certain extent.  The potential mismatch 
between the stream’s frame rate and frame size to the available values of TCn requires some 
overprovisioning. 
 
Streams are allocated to, and thus use up the bandwidth available to, each cycle separately.  
Any cycle can allocate up to 100% of the bandwidth of that cycle’s TA, but the percentages 
allocated to all of the cycles must, of course, add up to less than 100%.  The total amount of 
buffer space required depends on the allocation of streams to priority values.  If all streams are 
slow and are allocated to TC4 up to a total of 100%, then full-sized buffers must be used for 
buffers h and i.  If all streams are fast and are allocated to TC6, then only three small buffers are 
used—buffers a, b, and c are rapidly re-used.  
 
NOTE—There are many ways to allocate buffer space to individual frames.  Running CQF at 5 
levels does not increase the buffer memory requirements beyond that of 1-level CQF.  
Allocating bandwidth to slow cycle times uses more buffer space, of course, because frames 
dwell for a longer time. 
 
Given the ideal allocation described, each stream is allocated one frame in each cycle of one 
row.  It thus gets the optimal latency for its allocated bandwidth, which may be somewhat 
oversubscribed.  If the end-to-end latency requirements of the streams permit, a stream can be 
assigned to a slower (lower-numbered) cycle.  This will reduce the overprovision factor, since 
the overprovision factor depends on the number of frames per cycle.  It also increases buffer 
usage, of course. 
 
Any such overprovision can equally be thought of as an increased latency for that same stream.  
That is, if that oversubscribed stream was the only stream, then the TC cycle time could be 
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shortened to exactly the point of 1 frame per cycle, with 0 overprovision, and thus give a faster 
latency.  Overprovision = lower latency, in this case. 
 
The maximum reserved bandwidth is supported by allocating a stream multiple frames per 
cycle, as allowed by the stream’s required end-to-end latency, thus minimizing overprovision. 
 
3.2 Preemption and interference 
 
Frame preemption is described in IEEE Std 802.3-2018 clause 99 and IEEE Std 802.1Q-2018 
clause 6.7.2.  Not all of the bandwidth in a cycle TC can be allocated.  The smaller the cycle time, 
the greater the impact of the interference time (TI in section 2 and Figure 1) on the allocable 
bandwidth.   
 
TI is equal to the worst-case transmit time for a single transmission from a lower-priority queue.  
This interference can occur only at the beginning of a cycle.  Since this value must obviously be 
bound, it places a requirement, that must be enforced, on all lower-priority queues that they 
either have a maximum frame size or that frame preemption is applied to the lower-priority 
queues.  If preemption is used, the maximum interference is the maximum fragment size 
(about 150 bytes, see IEEE Std 802.3).  The interference time is shown as a gray parallelogram 
attached to timeline 1 in Figure 1. 
 
The other time is the preemption time TP, which applies only to streams that are preemptable.  
This case is not typical, but is possible if a large fraction of the available bandwidth is to be 
assigned to one or a few high-bandwidth streams, and lower-priority streams use larger frames.  
TP is the product of (the maximum number of highest-priority transmission windows that can 
open during a single window for the level being computed) * (the per-preemption penalty).  
Thus, in Figure 2, if priority 4 is preemptable, then there are 8 level 6 windows that can open.  
This means that there can be 8 preemption events during one level 4 window, so the total 
preemption time TP is 8 times the preemption penalty.  (It doesn’t matter which specific frames 
are preempted; only how many such events occur during the cycle.)  The preemption penalty is 
the number of bytes added when a frame is preempted, which is 4 (CRC on preempted 
fragment) + 20 (inter-frame gap) + 8 (preamble for continuation fragment) = 32 bytes. 
 
3.3 TC computation 
 
If the time per cycle that is allocable to streams is TA, then we can now state the computation 
for TC, given TA, or for TA, given TA, at each level in Figure 2: 
 

TC = TA + TP + TI + TB + TV 
 
The sum of all stream’s bits-per-cycle allocation must be less than or equal to TA. 
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IEEE Std 802.1Q-2018 Annex T, assumes the 2-buffer scheme, and so assumes that TB and TV are 
small enough and TC large enough to leave a useful TA.  Assuming that one’s goal is the smallest 
possible TC: 
 

a. TB can be eliminated by using the 3-buffer scheme. 
b. Implementation steps can be taken to reduce TV.  This may include steps to reduce the 

variability of the forwarding delay, the delay between selection-for-output and first-bit-
on-the-wire at the previous hop, or increased accuracy of the synchronized clock. 

c. TI can be reduced by restricting the maximum frame size of lower-priority streams, or by 
enabling frame preemption. 

 
3.4 Why integer multiples for TC? 
 
The ideal would for each stream S to have its own TCS that gives no overprovision.  But that 
winds up being equivalent to a per-stream-shaper solution such as Asynchronous Traffic 
Shaping or IntServ.  The reason can be seen in Figure 4.  
 

Figure 4 Variable TC 

                                         A3                         B3                      A3 

               A2 B2 A2               B2               A2 

  

In Figure 4, we have allocated 40% of the link bandwidth to the solid red stream in cycle 2, and 
50% of the link bandwidth to the blue striped stream in cycle 3.  The cycles do not line up with 
an integral number of faster cycles in each period of slower cycle.  Since we cannot predict 
exactly where, during a cycle, frames can be emitted, we can get the situation shown, in the 
shaded boxes.  Buffers B2, A2, and then again, B2 emit their frames (at high priority) at the 
indicated times.  Even though the solid red stream takes up only 40% of each level-2 cycle, it 
can output 6 frames over the course of cycle B3, thus taking up 60% of the bandwidth during 
that period.  There is, therefore, 110% of the bandwidth that must be output during the period 
that B3 is transmitting.  B3 cannot output all of its data.  Some of it must be somehow delayed, 
but there is no place to put that data.  Deterministic QoS is not obtained. 
 
Having an integral number of cycles at each layer fitting into one cycle at the next-slower layer 
ensures that the lower-priority, slower cycle, will always have sufficient time to output all of its 
frames, because the problem in Figure 4 is avoided.  It also bounds the number of preemption 
events that can steal bandwidth from a given priority level. 
 

4 Deterministic behavior of Multi-CQF 
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4.1 Basic requirement for determinism 
 
Multi-CQF guarantees the Deterministic QoS by the following argument. 
 
We assume that the Talker uses Multi-CQF.  Non-CQF Talkers are discussed in 7.1. 
 
We consider only one value of TC along the path of a given stream from Talker to Listener.  
Changing the TC value requires re-conditioning, as described in 7.3. 
 
The contract between the Talker and the network is in terms of 1) a maximum frame size, and 
2) a maximum number of bit-times on the medium per cycle time.  For Ethernet, the number of 
bit times for a given frame is equal to (the frame size from destination MAC address through 
Frame Check Sequence, plus 20 bytes for preamble and inter-frame gap) times 8 bits per byte. 
 
A number of considerations reduce the fraction of the total time TC that can actually be used to 
transmit data.  See section 2 for details.  For example, the maximum frame size of each stream 
allows us to determine the worst-case interference that a given stream can have on higher-
priority streams.  All of these considerations are bounded; if an implementation cannot bound 
one or more of these considerations, then it cannot guarantee the Deterministic QoS in a CQF 
network. 
 
In a detailed timing analysis, we will assume that the primary rule of IEEE Std 802.1Q Scheduled 
Transmissions is adhered to: the first bit of the MAC address of a frame is never transmitted 
before the start of the window time (according to the local time in the transmitter) and the last 
bit of the interframe gap (always) and the preamble of the next frame (if any) are transmitted 
before the end of the window. 
 
In order to obtain Deterministic QoS for each stream, we must ensure that no buffer is ever 
asked to hold more data than it can transmit during one cycle time TC.  Since the amount of 
data supplied by any given stream in one cycle is set by contract, we can accomplish this as 
follows: 
 

1) The Talker contract is enforced when a Talker’s frames are first placed into a CQF output 
buffer after entry to the network.  That is, the frames from a given stream do not 
exceed the Talker contract in the first CQF output buffer in the network. 
 
Ingress conditioning and/or policing is discussed in 7.1. 
 

2) Frames belonging to the same stream that are in the same CQF output buffer in one 
bridge in the network are placed in the same CQF output buffer in all subsequent 
bridges along a shared path. 
 
Section 2, and particularly Figure 1, show the details of how this is accomplished.  The 
key is to get the input gates synchronized with the output gates of the transmitting 
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system, offset by the link delay.  Frames received during one input cycle are always 
placed in the same buffer.  If the input cycle is synchronized with the previous hop’s 
output cycle, then cycle integrity is maintained.  (Of course, this only works for point-to-
point links.) 
 

3) There is no fan-in for a particular stream. 
 
We assume that the path of a stream reservation through the network is known and 
does not change.  A given stream enters a bridge through one port only, although it may 
be a multicast stream, and thus be enqueued and transmitted on more than one port. 
 

4) Admission control ensures that, on any given output port and cycle time TC, the total 
bits times for all streams passing through that port and TC value does not exceed the 
available transmission time on that port.  (This assumes that no bridge has a limitation 
on available receive time on an input port that is smaller than the attached output port’s 
available transmit time. The implications of such a limitation are obvious.) 

 
4.2 Admission control for multiple TC values 
 
Section 3 describes the operation of Multi-CQF with multiple TC values operating 
simultaneously on one output port.  Figure 3 shows an example of a sequence of transmissions.  
We observe that the shortest cycle times operate at the highest priority, and the longest at the 
lowest priority.  Because different CQF priority levels may have different maximum frame sizes, 
and because some may enable preemption, different priority levels may have different 
amounts of time during one cycle that cannot be allocated to stream transmission.  Clearly, 
allocating time for any CQF priority level reduces the time allocable to other priority levels; 
there is only one physical link. 
 
An administrator may wish to restrict allocation of CQF transmission times to leave room for 
transmitting non-CQF frames, either best-effort traffic or other, lower-priority TSN traffic. 
 
For a new stream to be admitted, it must be true that the available transmission times over all 
of the CQF levels on all of the output ports through which the stream travels have not been 
exhausted.  At any given CQF priority level x, one can add the bits allocated to all streams in one 
cycle at CQF priority level x, plus the sum over all more-important CQF priority levels y (faster 
cycles), of the product of the number of bits per cycle allocated at that level times the number 
of cycles at that level contained within one cycle at level x.  At every level, the total must not 
exceed the maximum number of allocable bits at that level. 
 
(This calculation is simpler if, at every CQF priority level, there is the same percentage of dead 
time and slop for inaccuracies, but this is not necessarily the case.) 
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4.3 Computing the actual end-to-end latency for Multi-CQF 
 
After adjusting to get the receiving window aligned with the previous-hop transmitting window, 
a bridge knows the “effective phase difference TAB” described in section 2.  Referring to Figure 
1, this allows the bridge to compute the difference, in time, between the start of an input 
window for the stream, and the start of the output window in which a frame received in that 
input window will be transmitted.  This is the dwell time for the frame in this bridge.  Adding 
this to the one-way link delay gives the per-hop delay for frames in the stream.  At egress from 
the CQF network, there is a margin of one cycle time less one frame transmission time for 
delivery of the frame, as the frame can be transmitted at any point during the cycle, but must 
both start and finish its transmission within the cycle.  The delay at ingress is somewhat more 
complicated to measure, as it depends upon the method used by the Talker and the ingress 
bridge to shape its transmissions. 
 
If we look again at Figure 1, we can see that the difference between using two and three 
buffers for a given input-output port pair is really a matter of rounding up the link delay to an 
integral number of cycle times.  If the sum of link delay and phase delay between output cycles 
is negligible, or happens to be very nearly an integer multiple of the cycle time, then the yellow 
“discard” area is small, and two buffers can be used.  If sum is larger, then one necessarily 
chooses between a smaller allocation (large discard area) and increased delay.  

5 Parameterization of Multi-CQF 
 
5.1 Per-stream and per-port static state 
 
In the general case, the minimum number of buffers required (usually 2 or 3) depends on the 
relative phase of the input and the output cycle start times.  But different input ports generally 
will have different phases.  Thus, the number of buffers used by any given output port will vary 
with the input port; an output port can have three buffers, for example, but for some input 
ports, there are never frames from that port in more than two buffers. 
 
For the present time, we will assume the following method for receiving a frame and assigning 
it to a buffer.  It is important to stress that there are many ways to accomplish the same task. 
 
Let Bo be the number of physical output buffers on port o.   We compute N, the least common 
multiple over all Bo in the system.  Each input port i assigns each received frame a buffer 
selector S, which is an integer in the range 0 through N—1, and which increments (modulo N) 
each input cycle.  Thus, frames transmitted from the same buffer are assigned the same S value 
at the receiving end of the link. 
 
At the output port o, each of the Bo buffers is identified by a buffer number in the range 0 
through Bo—1.  A variable Xo indicates which buffer is currently transmitting.  Xo increments 
once modulo Bo each output cycle. 
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When a frame arrives at an output port, it is assigned to a buffer b using the formula: 
 

b = (S + Pio) mod Bn 
 
Where Pio is the cycle phase offset from input port i to output port o.  See 5.5 for the 
determination of Pio.  Note that in the extreme case of all output ports using two buffers, all 
synchronized, and all input cycles in phase with the output cycles, the table Pio reduces to a 
single value, 0 or 1, and we have CQF from Annex T. 
 
It is desirable in some cases to deliberately use more buffers than are required for insurance 
against congestion loss in order to match the end-to-end delay of a stream across different 
paths through the network.  If such delay matching is performed per-stream, instead of per-
input port, then per-stream Pio values are required for buffer selection. 
 
Pio is not dynamic, though its values may change when the relative phasing between an input 
port cycle and the transmitter feeding it change suddenly.  Such a change will always disrupt 
the CQF service guarantees. 
 
 
Let us go through the exercise of initializing an input/output port pair for Multi-CQF.  In the 
process, we will collect a set of parameters that can be used with protocols and/or network 
management to monitor and control the operation of Multi-CQF. 
 
5.2 Cycle wander 
 
Adjacent bridges must be frequency locked as described in 1.3.2.  For any given port, there is a 
worst-case system clock difference, sysClockVar, between this bridge’s system clock and the 
neighbor system attached to the port.  Its units are a time difference.  We will assume that this 
parameter is configured by management, based on network design parameters and system 
data sheets.  It is possible that this parameter can be adjusted during network operation.  A 
bridge could have more than one system clock, and be connected to another system by 
multiple links, but there is only one value for sysClockVar for any given port, because we 
assume point-to-point links.  We will assume that the variation can be in either direction, this-
end-late or this-end-early. 
 
 IEEE Std 802.1Q scheduled transmissions and scheduled input gates are assumed to operate 
under control of a clock that is local to a port.  In 802.1Q, the management controls that 
configure the schedule are defined in terms of the system clock.  The bridge aligns the port 
clock(s) with the system clock either periodically or continuously.  There is thus a worst-case 
excursion of the actual start of a cycle from the time configured in terms of the system clock.  
We parameterize this with four parameters for each port, cycleInMaxEarly, cycleInMaxLate, 
cycleOutMaxEarly, and cycleOutMaxLate, all measures of time.  cycleIn*** is for the input gate 
error, cycleOut*** for the transmission error.  ***Early is the worst-case for starting the cycle 
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before the system clock time, and ***Late the worst-case for starting after the system clock 
time.  Having both early and late parameters allows for different implementation methods for 
aligning the port schedule to the system clock.  This parameter is computed by the bridge from 
knowledge of the implementation, and is constant over the lifetime of a physical connection. 
 
5.3 Link delay variation 
 
The time taken for a frame to travel from the transmitter to the receiver can vary for two 
reasons: the actual delay can change, due for example to temperature variations in a multi-
kilometer link, and the measurement of the link delay can vary due to various clock 
inaccuracies.  We will deal only with actual variations, not measurement variations.  1-21-0056-
00-ICne-input-synchronization-for-cyclic-queueing-and-forwarding explains why this is possible. 
 
5.4 Calculating the number of buffers required 
 
The procedure to calculate the number of buffers needed on an output port to support one 
particular input port is as follows: 
 

1) Establish a Nominal Input Cycle Start time (NICS) for the input port, and a Nominal 
Output Cycle Start time (NOCS) for the output port.  The NICS and NOCS each repeat 
every TC seconds, according to the system clock.  We will assume that the offset 
between them is a constant (i.e., they are both driven by the same system clock). 

2) Compute the earliest time, relative to the NICS, at which the first frame of a cycle can 
receive its IEEE Std 802.3 clause 90 timestamp.  This frame is assumed to be a minimum-
length frame (64 bytes plus overhead). 

3) Compute the earliest time, relative to the NICS, at which a buffer on the output port 
must be eligible to receive the frame.  This is equal to the timestamp time in bullet (2) 
plus the minimum time required to move the frame through the bridge to the output 
buffer. 

4) Compute the latest time, relative to the NICS, at which the last frame of a cycle can 
receive its timestamp.  This frame is assumed to be a minimum-length frame. 

5) If the difference between the earliest timestamp and the latest timestamp is greater 
than or equal to the cycle time TC, then dead time must be imposed on the transmitter, 
at the end of the cycle, to reduce the difference. 

6) Compute the latest time, relative to the NICS, at which the last frame of a cycle can be 
stored into an output buffer and be ready for selection for transmission, given the 
worst-case forwarding delay through the bridge. 

7) Convert these earliest (2) and latest (4) arrival times to times relative to the NOCS of the 
output port. 

8) Arbitrarily label an input port NICS event NICS0.  Determine the latest subsequent NOCS 
event, which we will label NOCS0, during which the earliest-arriving frame of NICS0 must 
be stored in the output queue.  
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9) Determine the earliest subsequent NOCS event, which we will label NOCSn, before 
which the latest-arriving frame from NICS0 can be stored in the queue, and still be 
available for transmission at the start of cycle NOCSn. 

10) The number of cycles NOCS0 through NOCSn, inclusive, is the number of buffers required 
for the input/output port pair, Bio. 

 
The number of buffers required can sometimes be reduced by: 
 

a) Imposing a larger dead time on the transmitter feeding the input port, at the end of 
every cycle; 

b) Altering the phase of the output port’s cycle; and/or 
c) Imposing implementation-specific limitations on the flows, e.g. reducing fan-in to an 

output port, or restricting bridging/routing features to reduce forwarding delay 
variation. 

 
Finally, let us observe that large link delay variations can be accommodated by varying the 
above calculation.  Assuming that the variations take place slowly, and that changes in relative 
phase between transmitter and receiver are detected using a protocol (e.g. that in new-finn-
CQF-sync-method-09-21-v1), the difference between the maximum and minimum link delay 
can be added to the difference between the earliest- and latest- arriving frames to increase the 
number of buffers allocated.  The phase of the input gate can be altered by small increments as 
the protocol detects the phase differences, without gaining or losing cycles in the transfer.  Of 
course, the maximum adjustment made per phase adjustment event must be removed from 
the allocable bandwidth. 
 
5.5 Initial buffer phase 
 
The number of buffers required on an output port is the maximum required over all input ports.  
This may be further increased by intentional delays (2.6).  When initializing an input port, a 
correspondence must be made between the input and output ports, so that a frame received 
on the input port will be stored in a particular buffer in the output port, the one that will 
become the transmitting buffer in the appropriate number of output cycles in the future. 
 
The phasing between input and output ports’ cycles, and thus the number of buffers in port o 
used by port i, is determined by the Pio table defined in 5.1.  We compute Pio when initializing 
CQF, or when the relative phase of the input and output ports change significantly, by selecting 
a time T that coincides with the start of an input cycle on input port i and computing: 
 

Pio = (Xo — Si — Bio + 1) mod N 
 

Where Xo is the identity of the transmitting buffer on output port o at time T, Bio is the total 
number of buffers required of output port o by input port i (including the transmit buffer), Si is 
the value of buffer ID S assigned by port i during the input cycle starting at time T, and N is the 
range of Si, the least common multiple of the number of physical buffers over all output ports. 
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5.6 Externally-visible Multi-CQF managed objects and protocol items 
 
The following list includes both objects of interest to a network manager, and information 
elements that might be exchanged using a link-local protocol.  Most items could be carried in a 
protocol as a check on proper configuration of adjacent ports, with varying degrees of utility for 
different items.  Some items can only be computed by one system, and must also be known to 
the adjacent system.  It is for further study what protocols would be used for such information 
transfers, or and/or whether the transfers are best accomplished using network management. 
 
5.6.1 Cycle and priority structure managed objects 
 
For each output port and each input port, separately, we have: 
 

a) The cycle time of the slowest CQF priority value. 
b) The priority value of the slowest CQF cycle. 

 
For each priority level running Multi-CQF on an input port or an output port (separately), we 
have: 
 

c) The layer 2 priority value 
d) The number of cycles at this priority level contained within one next-lower priority value 

cycle. 
 
There are other, equivalent, ways to formulate this same information.  We can divorce layer 2 
priority code point from importance, for example. 
 
These parameters are not expected to change over the lifetime of a data stream.  A system 
would not be expected to obtain this configuration information from a neighbor through a CQF-
specific protocol, though exchanging this information could be done to discover of 
configuration errors. 
 
5.6.2 Cycle phase managed objects 
 
For each output port and input port, separately, we have: 
 

a) The start time of the slowest Multi-CQF cycle, in terms of the system clock. 
 

This variable establishes the phase of the input or output cycle (NICS and NOCS, see 
5.4).  Typically, this variable would be managed the network administrator for output 
ports.  For time-synchronized systems, it can be administered for input ports, as well.  
Alternatively, the input phase can be determined dynamically, and be read by the 
network administrator.  Because it is in terms of the system clock, it is of no interest to 
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neighboring systems except, perhaps, as a configuration error check for time-
synchronized networks. 

 
5.6.3 Cycle variation information 

 
For each output port only, we have: 
 

a) The largest offset from the nominal (system clock) NOCS event to the actual cycle start 
time, in the negative (actual earlier than NOCS) direction. 

b) The largest offset from the nominal (system clock) NOCS event to the actual cycle start 
time, in the positive (actual later than NOCS) direction. 

 
There are other ways to express the information in these two items.  These values must be 
known to the connected input port in order for that system to compute its buffer and dead 
time requirements (cycleOutMaxEarly, cycleOutMaxLate in 5.2).  This information transfer 
could be accomplished by means of a protocol, managed objects, or by restrictions on 
implementations. 
 
5.6.4 Dead time / bandwidth balance information 
 
There remains the balancing of conflicting goals between dead the percentage of a cycle that is 
available to transmit critical data streams, and the number of buffers required on the output 
port.  Increasing the dead time can reduce the number of buffers required, and thus the end-to-
end latency of a data stream, as described in 5.4.  There are, at the very least, the following 
ways to make this decision: 
 

1) Configure the output cycle phase and number of buffers to use for all bridges, in order 
to establish a constant per-hop delay in a network with short links.  Let each system 
compute the dead time on each input port required to make this work, and the 
bandwidth available for allocation.  Convey the required dead time either by protocol or 
by management to the transmitters, and the available bandwidth to the admission 
control system. 

2) Configure the output cycle phase on all bridges.  Configure minimum and maximum 
allocable bandwidth values for each CQF priority level.  Let each system compute the 
minimum number of buffers required to meet the minimum bandwidth value, taking 
advantage of the maximum bandwidth value to compute a dead time value that 
minimizes the number of buffers required.  This would be useful in a network with very 
long links.  Convey the resultant dead time to the transmitter via protocol, and the 
resultant allocable bandwidth to the admission control system. 

3) Using data sheet information, configure all parameters via network management.  
Adjust the output port cycle phasing to optimize the delay for certain specific streams. 

 
Given that context, the following items are required by Multi-CQF: 
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a) Per input port, per priority level, the total dead time that must be provided by the 

adjacent transmitter at the end of each transmit cycle. 
 
There is a component of this dead time computed in this section, as well as one 
computed in item (5) of 5.4.  The sum of these must be known to the adjacent 
transmitting port. 
 

b) Per output port, per priority level, the total dead time that is to be provided at the end 
of each transmit cycle. 
 
This can be configured, obtained from the adjacent input node, or be a maximum of 
these values. 
 

c) The allocable bandwidth for this input port and priority level. 
 
This has three components, the minimum of the allocable bandwidth over all output 
ports reachable from this input port (in the input port’s own system), any limitations 
imposed by the input port implementation, and any maximum imposed by 
management.  Whether this is computed by, received by, or even known by the output 
port, or whether allocable bandwidth is the concern only of the admission control 
system, is an open question. 
 

d) The allocable bandwidth for this output port and priority level. 
 
This can be configured, computed from the adjacent input node’s requirements, or be a 
minimum of these values. .  Whether this is computed by, received by, or even known 
by the output port, or whether allocable bandwidth is the concern only of the admission 
control system, is an open question. 

 

6 Other issues 
 
6.1 Frame size problem 
 
The above discussion has largely assumed that each stream consists of frames of a uniform size, 
equal to the stream’s maximum frame size.  Of course, this is not always true. 
 
The advantage of uniform frame size is that, in the ideal case, one can allocate a stream one 
frame per cycle, and choose the cycle time and/or the stream’s bandwidth reservation so that 
there is no wasted bandwidth.  Similarly, if we imagine that a stream alternates frames of 4000 
bit times and 800 bit times, we can allocate 4800 bit times per TC and still get perfect results. 
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But, in a service provider situation where we are allocating a certain bandwidth per customer, 
but the frame sizes are essentially random, things are not so simple.  Let us suppose that the 
maximum frame for a stream is 13000 bit times, which is approximately equal to a maximum-
length Ethernet frame, and that the cycle time TC = 100µs.  13000/100µs = 130 Mbits/s.  But, 
allocating a bandwidth of 13000 bits/TC will not give the stream 130 Mb/s.  In the worst case, 
one 13000 bit frame followed by one minimum-length frame = 672 bits, the stream gets 
(13000+672)/(200 µs) = 68.36 Mb/s. 
 
We could overprovision the stream by a factor of almost 2, keep the same TC, and get minimal 
latency.  However, we could also assign the stream to a longer TC.  In the worst case, there are 
(13000–8) wasted bits in each cycle.  Therefore, we can guarantee 130 Mb/s using a cycle time 
of 500µs by provisioning (5*13000 + 13000 – 8)/(5*100µs), or 156 Mb/s, which is a 20% 
overprovisioning, rather than a 90% overprovisioning, at the cost of five times the per-hop 
latency. 
 
This overprovisioning/latency tradeoff is only needed for streams that have variable frame 
sizes, such as service provider streams.  But, for those streams, the lengths of the links may be a 
larger source of latency than the queuing delays, so the situation may not be so bad.  Also, any 
unused bandwidth is available to non-TSN data, so overprovisioning may not be a serious 
concern. 
 
In some use cases, it would be useful to “bundle” frames.  That is, combine and or split frames 
to form constant-sized transmission units perfectly suited to particular multi-CQF cycle time.  
We will not expand upon this idea, here. 
 
6.2 Tailored bandwidth offerings 
 
In a service provider environment, overprovisioning can also be improved by offering the 
customer only a specific set of choices for a bandwidth contract, corresponding to the values of 
TC implemented in the provider’s network.  This way, the overprovisioning required for meeting 
an arbitrary distribution of requirements using a small set of TC  values is eliminated.  (Or, at 
least, shifted to the customer’s shoulders.) 
 
6.3 Overprovisioning is not always bad 
 
Overprovisioning the bandwidth (allocating more of TA than is necessary) is not always a bad 
thing: 
 

a. Allocating a stream to a higher priority (smaller TC) than it needs reduces its worst-case 
latency.  This may be necessary to meet a stream’s end-to-end latency requirement.  
That is, one can overprovision the frame rate in order to obtain a reduced latency.  The 
unused bandwidth is still available for best-effort traffic.  Not all TSN transmission 
selection schemes have this feature. 
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b. If the total bandwidth required by critical streams is relatively low, using faster-than-
necessary TC values will both improve latency and reduce buffer requirements in the 
network.  The allocated-but-unused bandwidth is still available to best-effort traffic, and 
thus may be of no consequence. 

 
6.4 CQF and credit-based shaper 
 
Looking at Figure 3, we see that, once the major cycle at priority level 4 begins transmitting, the 
best-effort traffic is interrupted until all of the CQF level 4 data is transmitted.  At some point, 
as the amount of traffic in a very slow CQF cycle increases, the burstiness of the best-effort 
transmission opportunities could, in theory, become a problem.  This can be mitigated by 
applying a credit-based shaper function to the slowest multi-CQF cycle(s).  However, the 
parameters of this shaper must be adjusted as the load on the slow CQF cycle(s) changes, 
because a bridge must always finish transmitting all of the data in a CQF buffer.  Thus, adding a 
credit-based shaper would detract from the most-significant advantage of multi-CQF—its 
freedom from requiring reconfiguring a bridge each time a flow is added. 
 
6.5 Fundamental CQF pros and cons 
 
The obvious downside of CQF is that it requires clock frequency synchronization and per-port 
time-based gating.  On the other hand, CQF requires no per-stream per-hop active state 
machines.  A new stream can be provisioned by a network controller without any interaction 
between the network controller and any of the network’s relay systems, except for configuring 
one system for ingress policing/conditioning.  Furthermore, calculation of the worst-case end-
to-end latency is trivial, and the calculation made for one allocated stream is never affected by 
any other allocations or deallocations. 
  

7 Paternoster and multi-CQF 
 
There are several cases where Mick Seaman’s Paternoster algorithm greatly aids multi-CQF 
operations.  This algorithm is described in cr-seaman-paternoster-policing-scheduling-0519-v04.  
We can characterize it, for the purposes of the present document, as providing a counter state 
machine for each stream that allows a stream to store no more than its contracted amount of 
data per cycle into any given CQF buffer.  Frames above that limit are stored in subsequent 
buffers, up to the maximum amount of buffer space allowed that stream, whereupon excess 
data is discarded. 
 
7.1 Ingress conditioning 
 
A reserved stream entering a bridge from a correctly-behaving bridge or end station that runs 
CQF at the same cycle time as the receiving bridge needs no examination beyond being 
forwarding to the correct port(s).  However, a multi-CQF bridge could receive input from a 
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bridge, a talker, a router, or any other device that uses some deterministic algorithm(s) to 
condition its critical streams, but uses an algorithm other than CQF.  We assume that 
reservations (contracts) for these streams can be translated into CQF terms, with perhaps some 
overprovisioning required.  Long term, the data adheres to the contract.  But, for any given 
input window, an excessive number of bits can be received for a particular stream.  We would 
like to accommodate such input. 
 
The paternoster algorithm makes this possible.  A bridge uses the same buffer structure and 
output methods described in the preceding sections, but instead of obtaining the buffer 
selector S from the time of receipt of the input frame, as described in 5.1, it uses a state 
machine dedicated to each non-CQF stream, running the paternoster algorithm, to determine 
the buffer selector. 
 
More specifically, a stream’s frames are stored in the buffer that is next to be output until 
either a) that buffer is switched to become the output buffer, or b) storing a frame would 
exceed the number of transmission bit times allocated to that stream.  In the latter case, the 
data is stored and counted in the next available buffer.  If the number of buffers required 
exceeds a limit specific to the stream, the frame is discarded and an error condition is noted.   A 
more detailed description of the algorithm is given in Seamans paper, and will not be given, 
here. 
 
7.2 Paternoster Class of Service vs CQF Class of Service 
 
A given output buffer can accept input from both CQF and paternoster streams, as long as they 
share the same cycle time; separate paternoster and CQF buffers or queues are not necessary.  
In addition, a paranoid network administrator could very well configure a paternoster shaper 
on every stream in a purely-CQF network, in order to guard against misbehaving bridges or 
talkers.  That is, while paternoster can be thought of as separate algorithm from CQF, it can 
slow be thought of as a protection mechanism for CQF that can be employed as need, and 
when employed everywhere, removes the restriction that bridges operate at exactly (or even, 
approximately) the same frequency. 
 
This author would suggest that, in many networks, paternoster and CQF should be the same 
priority level.  The choice between paternoster and CQF can be made on a bridge-by-bridge 
basis, and not be visible to the talker, the listener, or the user. 
 
7.3 Changing cycle times 
 
If a stream enters a bridge using a cycle time TC, and is being transmitted on an output port 
with cycle time n*TC, then n successive input cycles can be deposited in the same output buffer 
with no problem, as long as the larger cycle time’s dead time requirements are met.  (This is not 
a trivial exception, as the larger cycle’s dead time occurs at the end of the large cycle, and thus 
may take up much or even all of one small cycle.)  Equivalently, the input port can be 
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configured with the slower cycle time to match the output port in the same system.  Of course, 
when making the reservation for that stream, the adjustment of its contract must be made; it is 
allocated n times the number of bits in the slower cycle than in the faster cycle. 
 
In all other cases, when a stream changes cycle times, the stream must pass through a 
paternoster shaper to ensure that the stream never exceeds its contract in the new cycle time. 
 
7.4 Aggregation and dis-aggregation 
 
A particular form of stream aggregation is useful for both reducing the number of streams 
tracked by a bridge, and for improving the per-hop latency of a stream.  In this type of 
aggregation, a number of streams are treated as a single stream, with a single reservation, 
traversing a single path, for some portion of their journey through the network.  It does not 
matter whether the frames are actually encapsulated in some common wrapper, or whether 
they are simply treated identically (e.g. given the same IEEE Std 802.1CB stream_identifier). 
 
What does matter for multi-CQF is that the aggregate stream, which has a bandwidth equal to 
the sum of its component streams, can be assigned a CQF level with a faster TC than its 
components could make use of.  Less buffer space is used for the aggregate than for the 
separate streams, because only one frame of the aggregate need fit in a cycle, instead of one 
frame per component stream.  The faster TC lowers the latency and reduces the buffer 
requirements for all its component streams. 
 
In general, this requires that the aggregate stream pass through a paternoster state machine 
when it is formed from its components, and that each component pass through a paternoster 
state machine if and when it is again separated as an individual stream and passes, presumably, 
to a slower TC value. 
 
7.5 Ingress Paternoster 
 
Seaman describes paternoster as if it operates on output buffers.  In certain situations, as for 
example in a bridge that has only one of its many ports that connects to a non-CQF transmitter, 
it may be more convenient to attach the paternoster state machine to the input port, rather 
than to the output port.  In this scenario, the assignment of a buffer selector S at the input gate, 
based on time as described in 5.1, is replaced by an assignment based on a paternoster state 
machine.  This, of course, requires that a given stream enter the bridge on exactly one port (or 
that the ports’ paternoster state machines be coordinated somehow).  However, it may be an 
economical alternative to providing the paternoster capability on all output ports, when only 
one or a few input ports requires conditioning. 


