

FFIoT Update Report – IEEE 802 NENDica

Nader Zein (NEC Europe (NLE))

Nader.zein@emea.nec.com

Pittsburgh PA, USA May 23rd, 2018

Outline

- Status of FFIoT whitepaper
- List of contributors and supporters
- High level outline of FFIoT whitepaper
- Overview of gap analysis newly added material
- Next step

Status of FFIoT whitepaper

- Latest pre-draft whitepaper in 2018-05-15: 802.1-18-0025-00-ICne
- Since March meeting, we had 1 conference call on April 11, 2018. Minor update to section title
- New pre-draft updated to include examples of gaps in existing IEEE 802 technologies
- Remaining (planned to complete before the Plenary meeting in San Diego):
 - Enhancements of IEEE 802 technologies for the future
 - Conclusion

List of contributors/supporters (1/2)

Name	Company	email
Hasegawa, Akio	Advanced Telecommunications Research Institute International (ATR)	ahase@atr.jp
Kondo, Yoshihisa	Advanced Telecommunications Research Institute International (ATR)	kondo@atr.jp
Sugiyama, Keizo	Advanced Telecommunications Research Institute International (ATR)	ke-sugiyama@atr.jp
Hasegawa, Jun	Fujitsu Kansai-Chubu Net-Tech Limited	hasegawa.jun@jp.fujitsu.com
Naitou, Syouji	Fujitsu Kansai-Chubu Net-Tech Limited	naito.shoji@jp.fujitsu.com
Hamaminato,	Fujitsu Laboratories Ltd.	hamamy@jp.fujitsu.com
Makoto		
Nishikawa, Takurou	Fujitsu Limited	nisikawa.taku@jp.fujitsu.com
Sato, Shinichi	Fujitsu Limited	sato_shinichi@jp.fujitsu.com
Wang, Hao	Fujitsu R&D Center Co., Ltd	wangh@cn.fujitsu.com
Su, Yi	Fujitsu R&D Center Co., Ltd.	yisu@cn.fujitsu.com
Kato, Toshio	Mobile Techno Corp.	kato.toshio@jp.fujitsu.com
Murata, Syuuichi	Mobile Techno Corp.	murata.syuuichi@jp.fujitsu.com
Yoshimura, Masahiro	Mobile Techno Corp.	yoshimum@jp.fujitsu.com
Tomita, Hisanori	Murata Machinery, Ltd.	hisanori.tomita@koa.muratec.co.jp
Itaya, Satoko	National Institute of Information and Communications Technology (NICT)	itaya@nict.go.jp
Kojima, Fumihide	National Institute of Information and Communications Technology (NICT)	f-kojima@nict.go.jp
Koto, Hajime	National Institute of Information and Communications Technology (NICT)	h-koto@nict.go.jp
Mochinaga, Mika	National Institute of Information and Communications Technology (NICT)	m-mochinaga@nict.go.jp
Ohori, Fumiko	National Institute of Information and Communications Technology (NICT)	fumiko@nict.go.jp
Ohsawa, Tomoki	National Institute of Information and Communications Technology (NICT)	tohsawa@nict.go.jp

List of contributors/supporters (1/2)

Name	Company	email
Hirabayashi, Chiaki	NEC Communication Systems, Ltd.	hirabayashi.ch@ncos.nec.co.jp
Ikenoue, Yuichi	NEC Communication Systems, Ltd.	ikenoue.yc@ncos.nec.co.jp
Hayashi, Takeshi	NEC Corporation	h-lin@ap.jp.nec.com
Hidaka, Youichi	NEC Corporation	y-hidaka@bq.jp.nec.com
Inoue, Takamichi	NEC Corporation	t-inoue@cj.jp.nec.com
Kato, Rintaro	NEC Corporation	r-kato@bk.jp.nec.com
Kobayashi, Tsukasa	NEC Corporation	t-kobayashi@fa.jp.nec.com
Maruhashi, Kenichi	NEC Corporation	k-maruhashi@bl.jp.nec.com
Nakajima, Taketoshi	NEC Corporation	nakajima@cp.jp.nec.com
Okayama, Yoshimitsu	NEC Corporation	y-okayama@bl.jp.nec.com
Osuga, Toru	NEC Corporation	t-oosuga@ce.jp.nec.com
Zein, Nader	NEC Europe Ltd.(NLE GmbH)	Nader.Zein@emea.nec.com
Fujimoto, Takuya	OMRON Corporation	takuya_fujimoto@omron.co.jp
Ikumo, Masahiro	OMRON Corporation	masahiro_ikumo@omron.co.jp
Saito, Keisuke	OMRON Corporation	keisuke_saito@omron.co.jp
Yamada, Ryota	OMRON Corporation	ryota_yamada@omron.co.jp
Ohue, Hiroshi	Panasonic Corporation	ohue.hiroshi@jp.panasonic.com
Amagai, Akihiro	Sanritz Automation Co., Ltd.	amagai@sanritz.co.jp

High level outline of FFIoT whitepaper

CONTENTS

INTRODUCTION

Scope

<u>Purpose</u>

DEFINITIONS

FACTORY OVERVIEW AND OPERATION ENVIRONMENT

Factory communication network environment

Radio Environment within Factories

(a) The Severe Environment for Wireless Communications

(b) Uncoordinated and Independent Systems

WIRELESS APPLICATIONS AND COMMUNICATION REQUIREMENTS

Scope of wireless applications in factory

Wireless applications

Communication requirements

Details of wireless application and communication requirements

FACTORY USAGE SCENARIOS

<u>Usage scenarios example: Metal processing site</u> Usage scenarios example: Mechanical assembly site

Usage scenarios example: Elevated and high temperature work site

Usage scenarios example: Logistics warehouse site

TECHNOLOGICAL ENHANCEMENT OF NETWORKING FOR FLEXIBLE FACTORY IOT

Concept of architecture

Gaps in existing IEEE 802 technologies

Coexisting of wide variety of factory applications with different requirements

QoS management for factories

Adaptation to rapid changes in wireless environments

Competition of wireless systems in unlicensed bands

Wireless link aggregation

Enhancements of IEEE 802 technologies for the future

CONCLUSIONS

CITATIONS

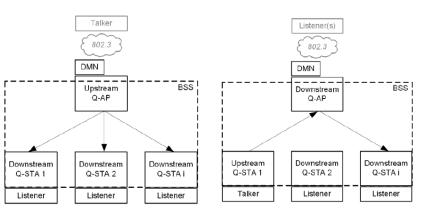
Hem Jodate

Overview of gap analysis

- ✓ Coexisting of wide variety of factory applications with different requirements
- ✓ QoS management for factories
- ✓ Adaptation to rapid changes in wireless environments
- √ Competition of wireless systems in unlicensed bands
- √ Wireless link aggregation

Coexisting of wide variety of factory applications with different requirements

Examples of QoS Tolerances in Factory Applications

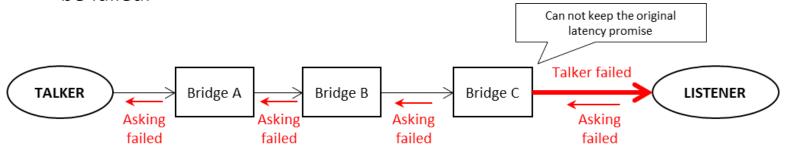

	QoS Tolerances							
	Latency (msec)		Bandwidth (kbps)		Packet Loss			
Category of Wireless Applications	<100	100~ 1000	>1000	>1000	100~ 1000	<100	Loss less	Non-Loss less
Equipment Control	✓	✓				✓	✓	
Quality Supervision	✓	✓	✓	✓	✓	✓	✓	
Factory Resource Management		✓	✓	✓	✓	✓	✓	✓
Display		✓	✓	✓	✓	✓	✓	✓
Human Safety	✓		✓	✓	✓	✓	✓	✓
Others		✓	✓	✓			✓	✓

QoS management for factories

- Several functions and protocols within existing IEEE802 standards that may be used for the provision of QoS and priority control over bridged network.
 - √ 802.11e MAC enhancement for QoS
 - √ 802.1Qat Stream Reservation Protocol (SRP)
 - √ 802.1Qcc SRP Enhancements and Performance Improvements
 - √ 802.11aa MAC enhancement for robust AV streaming

SRP on IEEE 802.11 media

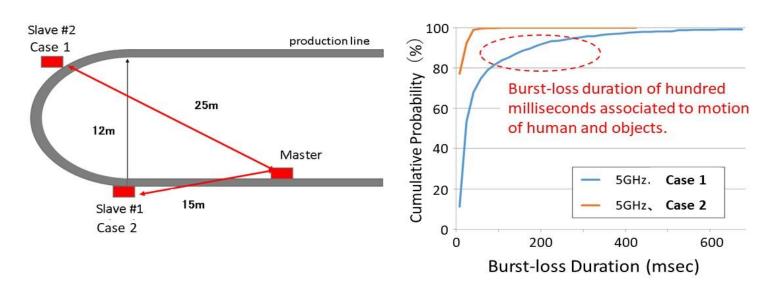
- Each STA-AP / STA-AP-STA link is equivalent to the path from an input to an output Bridge's port.
- An IEEE 802.11 BSS provides a single entity called the Designated MSRP Node (DMN) to manage the BSS bandwidth resources for the MSRP streams.



Bandwidth reservation—bridge model for IEEE 802.11 BSS (from Figure C-7, C-8 in Std 802.1Q-2014)

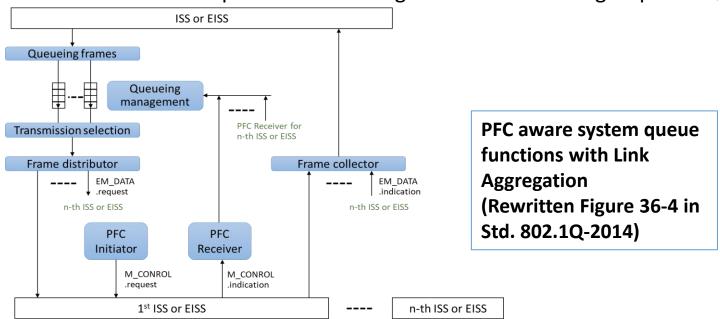
- √ 802.1Qbb Flow-based Priority Control (FPC)
- √ 802.1Qaz Enhanced Transmission Selection (ETS)

QoS management for factories – cont.


- SRP issue in factory environment
 - Accumulated Latency is used to estimate the worst-case latency that a stream could encounter from Talker to Listener.
 - Talker initializes the value and each bridge along the path will add the maximum expected delay.
 - Latency fluctuation over radio link in factory is large, which would increase
 the latency beyond the original guarantee, MSRP will then change the
 'Talker Advertise' to a 'Talker Failed' causing the end-to-end reservation to
 be failed.

 Coordinated control among the bridges is necessary to help the situation by addressing the unstable bandwidth / latency issues

Adaptation to rapid changes in wireless environments


- In the network accommodating factory applications such as quality supervision, factory resource management, display, and some of equipment control and safety, permissible latencies around <u>100 msec or less</u> for communications.
- An example of measurement indicated burst-loss occurred for the duration of several hundred msec due to multipath fading and shadowing.

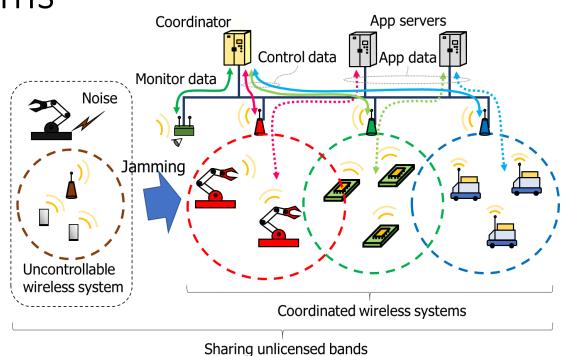
Burst-loss measurement in a large machine assembly site. (from Nendica FFIoT report)

Adaptation to rapid changes in wireless environments – cont.

- We considered the applicability of the PFC (Priority-base Flow Control) protocol under the radio condition in factory.
 - To ensure transfer of information between terminals in a dynamically changing wireless environment within the permissible latency.
 - To be a possible fast and efficient queueing control and forwarding mechanism to multiple links over bridges while maintaining required QoS.

Adaptation to rapid changes in wireless environments – cont.

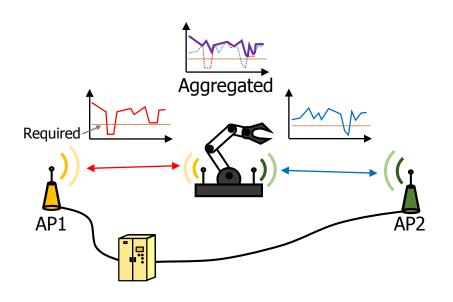
- Example- a real time video streaming
 - When the bandwidth of the link is low and the video quality is degraded below its usable level even with high-priority, incoming packets shall be discarded while critical traffic shall continue to be sent.
 - No loss is assumed for PFC which has been designed for data center environment.

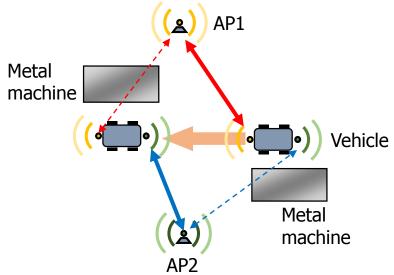

Gaps between Current PFC (Std.802.1Q-2014) and Functions to be enhanced

Current PFC (Std.802.1Q-2014)	Functions to be enhanced
8(max) links can be independently paused	Not only "pause" but also "discard" are
and restarted by queue control. Only no	acceptable depending on data attributes to
loss is acceptable for data center	express a variety of QoS requirements in factory
environment.	applications.
There is no specific description about	Dynamic frame distribution mechanism is
"frame distributor"	required to follow rapid changing bandwidth and
	to avoid burst loss for each ISS/EISS connected to
	a wireless media. Also see later description in
	Wireless link aggregation.

Competition of wireless systems in unlicensed bands

- unlicensed bands are used in many cases because they have large cost advantage in network deployment
- CSMA/CA of Wi-Fi and frequency hopping of Bluetooth are examples of simple mechanism used to allow coexistence operation in unlicensed bands
 - stable quality of service is difficult to maintain in such dense shared radio resources
- Some kind of coordination is required to mitigate impact of many wireless system competing to radio resources
- A simple mechanism would be to assign channel of each wireless system according to required bandwidth of applications

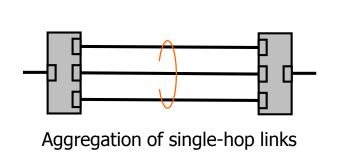

Example of Simple coordinated wireless systems

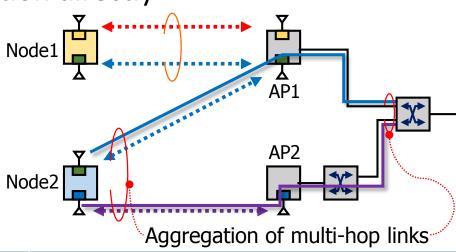


uncontrollable wireless systems and noise from non-communication devices like machine tools also need to be monitored, analyze behavior of interferers and estimate available wireless resources accurately for allocating wireless resources according to demands of applications

Wireless link aggregation

- It is difficult to keep stable wireless link quality in factory
- Use of multiple wireless links can improve the stability





- Correlation between wireless links is low in general
- Intermittent low bandwidth can be compensated by redundant data transmission through multiple links
- Handover occurs <u>after link quality</u> becomes bad
- Use of multiple links can also mitigate impact of the handover

Wireless link aggregation – cont.

 Link aggregation is defined in 802.1AX, but it is not applicable to the wireless link aggregation directly

802.1AX	Wireless link aggregation
 802.1AX assumes single-hop links	 Aggregation of multi-hop links
between 2 switches	needs to be assumed
 Redundant frame transmission is	 Redundant frame transmission
not allowed for maximizing	needs to be allowed for making
throughput	data path robust

Next Step

- Plan to have new update pre-draft by June 21, 2018 call
- first draft of whitepaper to be presented at F2F July 10th meeting after which to follow NENDica approval process by starting with a call for comments out of the San Diego meeting.